A novel approach to predict energy of physical activity
预测身体活动能量的新方法
基本信息
- 批准号:7094100
- 负责人:
- 金额:$ 32.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:analytical methodbioenergeticsbioengineering /biomedical engineeringbiomedical equipment developmentbiosensor devicebody movementbody physical activitybody weightcalorimetrychordate locomotionclinical researchhuman subjectmeasurementminiature biomedical equipmentmonitoring deviceportable biomedical equipment
项目摘要
DESCRIPTION (provided by applicant): The role of physical activity (PA) in many chronic diseases is increasingly being recognized. The accurate and detailed measurement of PA is a crucial prerequisite to further explore its association with health and disease. Small and wearable accelerometers allow objective measurement of PA (PA counts), while also providing a rough estimation of the energy expenditure associated with PA (EEAcT). However, current PA monitors are restricted to using time-averaged signals and linear regression algorithms which consistently provide inaccurate predictions of EEAc-r- the key characteristic of PA intensity. To fundamentally guide the future designs of PA monitors to accurately predict EEAcT, we hypothesize that parameters can be extracted from the raw acceleration and postural signals of multiple body segments. Using a unique combination of sophisticated instruments and technical expertise, we propose to develop a novel analytical approach for accurately predicting EEAc-reutilizing the raw acceleration signals from upper and lower body segments. This is accomplished by continuously measuring movement and postures, at a rate of 32 samples/second, using a custom-designed monitor that consists of an array of 10 accelerometers. We will measure minute-to minute EEAcT using a whole-room indirect calorimeter for a 24-hour period, and a portable calorimeter for a 3-hour free-living period. This measured EEAcT will be used as the target for the prediction model. We will apply an advanced modeling technique (artificial neural networks) to model the extracted PA parameters to arrive at an accurate prediction of EEAcT. Repeated measurements will be used to cross-validate the prediction accuracy of the model. The study is designed to encompass a heterogeneous population sample (n=200) of obese, overweight, and lean adults, and to include a wide range of PA types and intensities. The significance of this research is that our results will provide insight for developing the next-generation PA monitors, such as where on the body the sensors should be placed, what signal parameters should be extracted, and how the analytical algorithms should be applied. In addition, our study will improve and validate EEAcT prediction by several market-available PA monitors, thus offering immediate benefits to their applications in the field.
描述(由申请人提供):体力活动 (PA) 在许多慢性疾病中的作用日益得到认识。准确、详细的 PA 测量是进一步探讨 PA 与健康和疾病关系的关键先决条件。小型可穿戴加速度计可以客观测量 PA(PA 计数),同时还可以粗略估计与 PA 相关的能量消耗(EEAcT)。然而,当前的 PA 监测仪仅限于使用时间平均信号和线性回归算法,这些算法始终无法准确预测 EEAc-r(PA 强度的关键特征)。为了从根本上指导 PA 监视器的未来设计以准确预测 EEAcT,我们假设可以从多个身体部位的原始加速度和姿势信号中提取参数。通过将先进的仪器和技术专业知识独特地结合起来,我们建议开发一种新颖的分析方法来准确预测 EEAc——重新利用来自上半身和下半身的原始加速度信号。这是通过使用由 10 个加速度计阵列组成的定制设计的监视器以每秒 32 个样本的速率连续测量运动和姿势来实现的。我们将使用全房间间接热量计测量 24 小时的每分钟 EEAcT,并使用便携式热量计测量 3 小时的自由生活时间。测得的 EEAcT 将用作预测模型的目标。我们将应用先进的建模技术(人工神经网络)对提取的 PA 参数进行建模,以准确预测 EEAcT。重复测量将用于交叉验证模型的预测准确性。该研究旨在涵盖肥胖、超重和瘦成年人的异质人群样本 (n=200),并包括广泛的 PA 类型和强度。这项研究的意义在于,我们的结果将为开发下一代 PA 监视器提供见解,例如传感器应放置在身体的何处、应提取哪些信号参数以及应如何应用分析算法。此外,我们的研究将改进和验证几种市场上可用的 PA 监视器的 EEAcT 预测,从而为其在该领域的应用提供直接的好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MACIEJ S BUCHOWSKI其他文献
MACIEJ S BUCHOWSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MACIEJ S BUCHOWSKI', 18)}}的其他基金
METABOLIC CONSEQUENCES OF ERYTHROCYTE TRANSFUSION IN SICKLE CELL ANEMIA
镰状细胞贫血症红细胞输注的代谢后果
- 批准号:
7731356 - 财政年份:2006
- 资助金额:
$ 32.66万 - 项目类别:
METABOLIC CONSEQUENCE OF SICKLE CELL ANEMIA IN ADOLESCENCE
青少年镰状细胞贫血症的代谢后果
- 批准号:
7605530 - 财政年份:2006
- 资助金额:
$ 32.66万 - 项目类别:
METABOLIC CONSEQUENCE OF SICKLE CELL ANEMIA IN ADOLESCENCE
青少年镰状细胞贫血症的代谢后果
- 批准号:
7731355 - 财政年份:2006
- 资助金额:
$ 32.66万 - 项目类别:
METABOLIC CONSEQUENCES OF ERYTHROCYTE TRANSFUSION IN SICKLE CELL ANEMIA
镰状细胞性贫血中红细胞输注的代谢后果
- 批准号:
7605531 - 财政年份:2006
- 资助金额:
$ 32.66万 - 项目类别:
Physical Activity Energy Expenditure and Adolescent Obesity
体力活动能量消耗与青少年肥胖
- 批准号:
7274119 - 财政年份:2005
- 资助金额:
$ 32.66万 - 项目类别:
相似国自然基金
基于SIRT1/PGC-1α探讨生脉饮通过调节线粒体生物能量学治疗慢性心力衰竭的机制研究
- 批准号:82374195
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
从生物能量学角度研究鹿角杯形珊瑚繁殖阶段对升温的响应机制
- 批准号:41906097
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于生物能量学和共生关系的碳钢混合菌落微生物腐蚀研究
- 批准号:51801232
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
鱼类“个性”分化研究-代谢限制及生态关联的环境依赖性
- 批准号:31670418
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
非营养胁迫后牙鲆的补偿生长及机制
- 批准号:30600462
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Detection of chewing and swallowing to estimate eating patterns and energy intake
检测咀嚼和吞咽以估计饮食模式和能量摄入
- 批准号:
7140644 - 财政年份:2005
- 资助金额:
$ 32.66万 - 项目类别:
Detection of chewing and swallowing to estimate eating patterns and energy intake
检测咀嚼和吞咽以估计饮食模式和能量摄入
- 批准号:
7022662 - 财政年份:2005
- 资助金额:
$ 32.66万 - 项目类别:
A new device for metabolic monitoring in infants
一种用于婴儿代谢监测的新设备
- 批准号:
7013127 - 财政年份:2004
- 资助金额:
$ 32.66万 - 项目类别: