LIPOSOME-ENCAPSULATED NANOSHELLS
脂质体封装的纳米壳
基本信息
- 批准号:7357800
- 负责人:
- 金额:$ 1.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-12-01 至 2006-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Salicylate is the active metabolite of aspirin and a member of the popular non-steroidal anti-inflammatory drugs (NSAIDs) used to treat fever, pain and arthritis. However, it is known to cause ulcers, which could be explained by the ability of the molecule to disrupt the phospholipid layer covering the gastric mucosa. Because mechanical properties of a lipid membrane can be altered by minor changes in the chemistry of the proteins or lipids that compose the membrane, and because electrostatics is the most dominant force at the nanoscale, it is believed that more detailed measurements of salicylate-lipid interactions will provide insights into these fundamental biological processes. Surface-Enhanced Raman Scattering (SERS) response of gold nanoshells, which are tunable optical nanoparticles consisting of a dielectric (silica) core and a thin metallic (gold) shell, can be a very useful tool to probe salicylate membrane interactions. The optical resonance of nanoshells gives rise to an intense optical field at the surface of the nanoparticle. The high optical intensities at the nanoshell surface can be used to enhance the chemical spectroscopic signal of salicylate, a Raman-active molecule, which when embedded in a lipid membrane on the surface of the nanoshell should yield a strong SERS signal. Thus, SERS will be useful to probe lipid membrane properties and monitor the insertion of salicylic acid molecules into the lipid membrane. SERS measurements of inserted salicylate hinges on successful liposome- encapsulation of nanoshells. This requires extensive microscopic characterization of the lipid-nanoshell interacting system. CryoEM measurements can provide evidence of liposome-encapsulation of nanoshells and can help establish the thickness of the lipid membrane formed around the nanoshells. Therefore, cryoEM imaging is essential to the progress of this project. Imaging of the prepared liposome-nanoshell samples will be conducted at the cryoEM facility at NCMI. Results from our studies will relate our continuum micromechanical measurements to molecular interactions. In addition to studying the effect salicylate has on membrane dynamics, nanoshell-encapsulated liposomes may provide a vehicle for intracellular uptake of nanoshells which can be useful for drug delivery.
该子项目是利用NIH/NCRR资助的中心赠款提供的资源的许多研究子项目之一。子弹和调查员(PI)可能已经从其他NIH来源获得了主要资金,因此可以在其他清晰的条目中代表。列出的机构适用于该中心,这不一定是调查员的机构。水杨酸酯是阿司匹林的活性代谢产物,也是用于治疗发烧,疼痛和关节炎的流行非甾体类抗炎药(NSAIDS)的成员。但是,已知会引起溃疡,这可以通过分子破坏覆盖胃粘膜的磷脂层的能力来解释。由于脂质膜的机械性能可以通过构成膜的蛋白质或脂质的化学变化来改变,并且由于静电是纳米级最主要的力量,因此人们认为,更详细的水杨酸脂质相互作用的测量结果将为这些碱性生物过程提供洞察力。金纳米壳的表面增强拉曼散射(SERS)响应是由介电(硅)芯和薄金属(金)壳组成的可调光学纳米颗粒,可以是探测水杨酸酯膜相互作用的非常有用的工具。纳米壳的光学共振产生了纳米颗粒表面的强烈光场。纳米壳表面的高光学强度可用于增强水杨酸水杨酸酯的化学光谱信号,水杨酸酯是一种拉曼活性分子,当将其嵌入纳米壳表面的脂质膜中时,该信号应产生强烈的SERS信号。因此,SER对于探测脂质膜特性和监测水杨酸分子插入脂质膜将是有用的。插入水杨酸酯取决于纳米壳的成功脂质体封装的SERS测量。这需要脂质 - 纳米什尔相互作用系统的广泛微观表征。冷冻测量值可以提供纳米丝脂质体囊化的证据,并有助于确定纳米壳周围形成的脂质膜的厚度。因此,冷冻成像对于该项目的进展至关重要。准备好的脂质体纳米壳样品的成像将在NCMI的冷冻设施进行。我们的研究结果将使我们的连续微力测量与分子相互作用有关。除了研究水杨酸盐对膜动力学的影响外,纳米壳封闭的脂质体还可以为细胞内摄取纳米壳提供载体,这对于药物递送很有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAOMI HALAS其他文献
NAOMI HALAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAOMI HALAS', 18)}}的其他基金
Project 1: Streamlined identification of PAHs/PACs in environmental samples using ultracompact spectroscopy platforms and machine learning strategies
项目 1:使用超紧凑光谱平台和机器学习策略简化环境样品中 PAH/PAC 的识别
- 批准号:
10559694 - 财政年份:2020
- 资助金额:
$ 1.51万 - 项目类别:
Project 1: Streamlined identification of PAHs/PACs in environmental samples using ultracompact spectroscopy platforms and machine learning strategies
项目 1:使用超紧凑光谱平台和机器学习策略简化环境样品中 PAH/PAC 的识别
- 批准号:
10116392 - 财政年份:2020
- 资助金额:
$ 1.51万 - 项目类别:
相似国自然基金
主动冷却用分子筛外延晶粒封装Pt-CeOx的构筑及催化环烷烃脱氢性能
- 批准号:22308257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于封装界面微环境调控的高熵合金多位点协同催化木质素低聚物加氢制芳烃机制研究
- 批准号:52376185
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
先进电子封装用苯并环丁烯基低介电聚合物材料
- 批准号:52373316
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
电热应力下封装绝缘树脂内介观尺度凝聚态结构的原位三维重构与演化规律
- 批准号:52377133
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
普适性细胞膜定向封装仿生纳米前药增效靶向抗动脉粥样硬化的研究
- 批准号:52303146
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 1.51万 - 项目类别:
Standard Grant
Nanoengineered, Encapsulated Catalysts from Fly Ash Waste
来自飞灰废物的纳米工程封装催化剂
- 批准号:
LP220100365 - 财政年份:2023
- 资助金额:
$ 1.51万 - 项目类别:
Linkage Projects
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
- 批准号:
10555093 - 财政年份:2023
- 资助金额:
$ 1.51万 - 项目类别:
Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
- 批准号:
2311986 - 财政年份:2023
- 资助金额:
$ 1.51万 - 项目类别:
Standard Grant
Development of brain-targeted intranasal formulation consisting of NSAIDs encapsulated in micelles using ionic liquids
开发由使用离子液体封装在胶束中的非甾体抗炎药组成的脑靶向鼻内制剂
- 批准号:
23K14395 - 财政年份:2023
- 资助金额:
$ 1.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists