Project 1: Streamlined identification of PAHs/PACs in environmental samples using ultracompact spectroscopy platforms and machine learning strategies
项目 1:使用超紧凑光谱平台和机器学习策略简化环境样品中 PAH/PAC 的识别
基本信息
- 批准号:10116392
- 负责人:
- 金额:$ 27.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-28 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAirAlgorithmsAluminumAromatic CompoundsAromatic Polycyclic HydrocarbonsBiologicalBiomimeticsCarcinogensChemicalsChronic lung diseaseClassificationClinicClinicalComplexComplex MixturesDetectionDevelopmentDevicesElectromagneticsEvaluationExposure toFamilyGeometryGoalsGoldHealthHealth HazardsHumanHydroxyl RadicalLaboratoriesLibrariesLiquid substanceMachine LearningManualsMass FragmentographyMethodsModelingMolecularMolecular StructureMonitorMutagensNanostructuresNeurocognitive DeficitOpticsOutcomeParentsPatient MonitoringPolymersPopulationPremature BirthPreparationPreventionRaman Spectrum AnalysisResearchRiskRisk AssessmentSamplingSignal TransductionSiliconSilverSoilSpectrum AnalysisStructureSurfaceTechniquesTechnologyTestingTimeTrainingVariantWaterWorkabsorptionadhesive protein (mussel)air samplingautomated algorithmbaseconvolutional neural networkcostdesigndetection limitdetection methoddetection platformdetection sensitivitydetection testdetectorearly life exposureenhancing factorexposed human populationhazardimprovedinfrared spectroscopyinnovationinstrumentationinterestlearning algorithmlearning strategymachine learning algorithmmetallicitymodel developmentmonolayernanoengineeringnanofabricationnanoparticlenanosensorsnovel strategiesprototyperemediationresponsesoil samplingsuperfund sitetoolvibrationwater samplingwaterborne
项目摘要
Project Summary
Exposure to polycyclic aromatic hydrocarbons (PAHs) and associated polycyclic aromatic compounds
(PACs) has long been identified with a large number of human health risks. PAHs are well-known carcinogens
and mutagens. Current analytical techniques for detection of PAHs and PAC are laboratory based, slow,
complex, and require expensive instrumentation and sample preparation. We propose an entirely new approach
combining optical spectroscopic techniques such as Surface Enhanced Raman Spectroscopy (SERS) and
Surface Enhanced Infrared Absorption (SEIRA). These techniques can also be combined onto a single
nanoengineered substrate, designed to sensitively identify specific PACs. While these techniques have been
demonstrated successfully using gold and silver based nanoparticles and nanoengineered substrates, we
propose to expand these techniques using inexpensive and environmentally friendly Aluminum nanoengineered
substrates for streamlined ultrasensitive PAH and PAC detection. This platform will utilize polydopamine, a
biomimetic polymer inspired by mussel adhesive proteins, as coatings for molecular partitioning, selectively
extracting and adsorbing PAH and PAC molecules from samples of interest onto the nanosensing substrates. In
preliminary results, this approach has yielded sub-ppb detection sensitivities for PAH molecules extracted from
liquid samples. Furthermore we propose to design and demonstrate a new type of chemical detector that can
be fully integrated with SERS and/or SEIRA substrates, to directly generate an electrical signal in response to
the spectrum of the PAH and PAC molecules. This would eliminate the need for bulky and expensive
monochromators and dispersive optics, ultimately allowing for the design of ultracompact, “on-chip” detectors
that can be deployed in the field at superfund sites and in the clinic. Prototypes of this type of direct spectral
detector have recently been demonstrated by our group. We will also address one of the primary problems
universal to analyte detection and analysis, the detection of chemical mixtures, likely to be found under actual
field sampling conditions, by applying a machine learning approach. We propose to develop machine learning
algorithms that automatically analyze the spectra of multicomponent samples, trained to identify with high
accuracy and precision their PAH and PAC components. The ultimate outcome of this project is the creation of
a streamlined, ultracompact, ultrasensitive chemical analysis and detection platform, capable of identifying
multiple PAHs and PACs in a single sample without costly separation and purification steps, which could be
readily transitioned to fieldable use.
项目概要
接触多环芳烃 (PAH) 和相关的多环芳族化合物
多环芳烃(PACs)早已被认定对人类健康具有大量风险,是众所周知的致癌物质。
目前用于检测 PAH 和 PAC 的分析技术是基于实验室的、缓慢的、
复杂,并且需要昂贵的仪器和样品制备,我们提出了一种全新的方法。
结合光学光谱技术,例如表面增强拉曼光谱 (SERS) 和
表面增强红外吸收 (SEIRA) 也可以将这些技术组合到一起。
纳米工程基质,旨在灵敏地识别特定的 PAC,而这些技术已被采用。
成功地使用金和银基纳米颗粒和纳米工程基材,我们
建议使用廉价且环保的纳米工程铝来扩展这些技术
用于简化超灵敏 PAH 和 PAC 检测的底物 该平台将利用聚多巴胺(一种聚多巴胺)。
受贻贝粘附蛋白启发的仿生聚合物,作为分子分区的涂层,选择性地
从感兴趣的样品中提取 PAH 和 PAC 分子并将其吸附到纳米传感基板上。
初步结果表明,该方法对从油中提取的 PAH 分子产生了亚 ppb 的检测灵敏度。
我们建议进一步设计和演示一种新型化学探测器。
与 SERS 和/或 SEIRA 基板完全集成,直接生成响应的电信号
PAH 和 PAC 分子的光谱,这将消除对体积大且昂贵的需求。
单色仪和色散光学器件,最终允许设计超紧凑的“片上”探测器
可以在超级基金现场和诊所中部署这种类型的直接光谱原型。
我们小组最近演示了探测器,我们还将解决主要问题之一。
普遍用于分析物检测和分析,化学混合物的检测,可能在实际情况下发现
通过应用机器学习方法,我们建议开发机器学习方法。
自动分析多组分样品光谱的算法,经过训练可识别高
其 PAH 和 PAC 组件的准确性和精确度 该项目的最终成果是创建了
精简、超紧凑、超灵敏的化学分析和检测平台,能够识别
单个样品中含有多种 PAH 和 PAC,无需昂贵的分离和纯化步骤,这可以
很容易过渡到现场使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAOMI HALAS其他文献
NAOMI HALAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAOMI HALAS', 18)}}的其他基金
Project 1: Streamlined identification of PAHs/PACs in environmental samples using ultracompact spectroscopy platforms and machine learning strategies
项目 1:使用超紧凑光谱平台和机器学习策略简化环境样品中 PAH/PAC 的识别
- 批准号:
10559694 - 财政年份:2020
- 资助金额:
$ 27.2万 - 项目类别:
相似国自然基金
高维空气质量预测的初始场的张量建模与高性能算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
守恒型高阶气体动理论统一算法及应用研究
- 批准号:11902339
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
面向PM2.5空气污染的多重分形与协同群体智能算法研究
- 批准号:61806068
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
融合气动力学修正算法的无人驾驶汽车造型形态推衍迭代设计方法
- 批准号:51875306
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于地表-大气逐次解耦的陆地上空气溶胶偏振反演研究
- 批准号:41601392
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
- 批准号:
10760409 - 财政年份:2023
- 资助金额:
$ 27.2万 - 项目类别:
Upper airway collapsibility, loop gain and arousal threshold: an integrative therapeutic approach to obstructive sleep apnea
上气道塌陷、循环增益和唤醒阈值:阻塞性睡眠呼吸暂停的综合治疗方法
- 批准号:
10859275 - 财政年份:2023
- 资助金额:
$ 27.2万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 27.2万 - 项目类别:
Noninvasive Diagnostic Markers of Lower Respiratory Tract Infection in Mechanically Ventilated Patients
机械通气患者下呼吸道感染的无创诊断标志物
- 批准号:
10697471 - 财政年份:2023
- 资助金额:
$ 27.2万 - 项目类别:
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 27.2万 - 项目类别: