Multiaxial Single-Cell Biomechanics for Mechanotransduction

用于力传导的多轴单细胞生物力学

基本信息

  • 批准号:
    7365278
  • 负责人:
  • 金额:
    $ 21.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The development, remodeling, and pathogenesis of many tissues depend in part on mechanical signals. The foundation of mechanotransduction which transforms the mechanical environment experienced by articular cartilage into a biomolecular response will initially be explored through single chondrocyte manipulation. Healthy chondrocytes experience hydrostatic, compressive, tensile, and shear forces that maintain the phenotype and production of neocartilaginous tissue. Abnormal mechanical forces due to single cycle or fatigue loading, have been shown to alter chondrocyte behavior, resulting in pathological matrix synthesis, increased catabolic activity (degradation), and ultimately osteoarthritis (apoptosis). Studies of the biomechanics of single cells originating from the specific cartilage zones are critical for deciphering the transmission of heterogeneous tissue-level forces to the molecular machinery within the cell. A more complete knowledge of individual cellular biomechanics will prioritize the biomechanical factors most critical to stimulating regenerative processes. As there is no consensus as to the mechanical signals that are optimally effective in modulating cell function, much is left to be studied. We recently developed an integrated /micro- particle image velocimetry/optical tweezers (5PIVOT) system toward this goal. This device was designed as a unique tool intended to study cellular mechanics and facilitate the characterization of mechanobiology. The laser-based technologies have been custom-integrated to physically hold cellular or molecular structures concomitant with monitoring fluid and optical force-induced deformations of the structure. The objective of this project is to establish the feasibility of applying an 5PIVOT system for single chondrocyte biomechanics as a precursor to mechanotransduction. This effort will support the Academic Research Enhancement Award (AREA) Program as directed by the following specific aims: 1) to optimize the integration of two optical systems, not previously used in concert, for measuring multiaxial biomechanical properties of single living cells; 2) to apply a sequence of single and multiple axis stresses to individual chondrocytes while measuring the resulting strain response. Successful outcomes from this AREA can then be used to explore the environment most effective in inducing mechanotransduction. Completion of these studies should provide significant insight into the mechanical response of chondrocytes, contribute to the understanding of pathologic cell states and therapeutic approaches for load-bearing tissues, and guide the design of engineered biomaterials which control cellular function
描述(由申请人提供):许多组织的发育,重塑和发病机理部分取决于机械信号。机械转导的基础最初将通过单个软骨细胞操作来探索关节软骨所经历的机械环境转化为生物分子反应的机械环境。健康的软骨细胞会经历静水,压缩,拉伸力和剪切力,可维持新脂肪组织的表型和产生。由于单个周期或疲劳负荷引起的异常机械力,已显示会改变软骨细胞行为,从而导致病理基质合成,分解代谢活性增加(降解)和最终导致骨关节炎(凋亡)。对起源于特定软骨区域的单细胞的生物力学的研究对于将异质组织水平力向细胞内的分子机械传播的传播至关重要。对单个细胞生物力学的更完整的了解将优先考虑刺激再生过程至关重要的生物力学因素。由于对于在调节细胞功能方面具有最佳有效的机械信号尚无共识,因此仍有很多研究。我们最近将一个集成 /微粒图像速度计 /光镊(5Pivot)系统针对此目标开发了。该设备被设计为一种独特的工具,旨在研究细胞力学并促进机械生物学的表征。基于激光的技术已被定制,以便在物理上保持细胞或分子结构与监测流体和光学力诱导的结构变形相关。该项目的目的是建立将5个远程系统应用于单软骨细胞生物力学的可行性,作为机械转移的先驱。这项工作将按照以下特定目的为学术研究增强奖(区域)计划(区域)计划:1)优化两个以前在协同中不使用的光学系统的集成,用于测量单个活细胞的多轴生物力学特性; 2)在测量所得的应变反应的同时,将一系列单轴和多个轴应力应用于单个软骨细胞。然后,可以使用该领域的成功结果来探索最有效诱导机械转移的环境。这些研究的完成应为软骨细胞的机械反应提供重大洞察力,有助于理解病理细胞态和负载组织的治疗方法,并指导控制细胞功能的工程生物材料的设计

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Periodic Nanomechanical Stimulation in a Biokinetics Model Identifying Anabolic and Catabolic Pathways Associated With Cartilage Matrix Homeostasis.
生物动力学模型中的周期性纳米机械刺激识别与软骨基质稳态相关的合成代谢和分解代谢途径。
An inverse method for predicting tissue-level mechanics from cellular mechanical input.
一种根据细胞机械输入预测组织水平力学的逆方法。
  • DOI:
    10.1016/j.jbiomech.2008.11.014
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Kim,Wangdo;Tretheway,DerekC;Kohles,SeanS
  • 通讯作者:
    Kohles,SeanS
Volumetric stress-strain analysis of optohydrodynamically suspended biological cells.
光流体动力学悬浮生物细胞的体积应力应变分析。
Mechanical stress analysis of microfluidic environments designed for isolated biological cell investigations.
  • DOI:
    10.1115/1.4000121
  • 发表时间:
    2009-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kohles SS;Nève N;Zimmerman JD;Tretheway DC
  • 通讯作者:
    Tretheway DC
Optical acquisition and polar decomposition of the full-field deformation gradient tensor within a fracture callus.
骨折愈伤组织内全场变形梯度张量的光学采集和极分解。
  • DOI:
    10.1016/j.jbiomech.2009.06.009
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Kim,Wangdo;Kohles,SeanS
  • 通讯作者:
    Kohles,SeanS
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SEAN S KOHLES其他文献

SEAN S KOHLES的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SEAN S KOHLES', 18)}}的其他基金

Composition/Functional Elasticity of Engineered Tissues
工程组织的成分/功能弹性
  • 批准号:
    6661938
  • 财政年份:
    2002
  • 资助金额:
    $ 21.91万
  • 项目类别:
Composition/Functional Elasticity of Engineered Tissues
工程组织的成分/功能弹性
  • 批准号:
    6481437
  • 财政年份:
    2002
  • 资助金额:
    $ 21.91万
  • 项目类别:

相似国自然基金

签字注册会计师动态配置问题研究:基于临阵换师视角
  • 批准号:
    72362023
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
  • 批准号:
    72372064
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
会计师事务所数字化能力构建:动机、经济后果及作用机制
  • 批准号:
    72372028
  • 批准年份:
    2023
  • 资助金额:
    42.00 万元
  • 项目类别:
    面上项目
会计师事务所薪酬激励机制:理论框架、激励效应检验与优化重构
  • 批准号:
    72362001
  • 批准年份:
    2023
  • 资助金额:
    28.00 万元
  • 项目类别:
    地区科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
  • 批准号:
    72332002
  • 批准年份:
    2023
  • 资助金额:
    165.00 万元
  • 项目类别:
    重点项目

相似海外基金

Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    $ 21.91万
  • 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
  • 批准号:
    10711136
  • 财政年份:
    2023
  • 资助金额:
    $ 21.91万
  • 项目类别:
Human-iPSC derived neuromuscular junctions as a model for neuromuscular diseases.
人 iPSC 衍生的神经肌肉接头作为神经肌肉疾病的模型。
  • 批准号:
    10727888
  • 财政年份:
    2023
  • 资助金额:
    $ 21.91万
  • 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
  • 批准号:
    10709381
  • 财政年份:
    2023
  • 资助金额:
    $ 21.91万
  • 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
  • 批准号:
    10733406
  • 财政年份:
    2023
  • 资助金额:
    $ 21.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了