Microstructure-sensitive machine learning for smart metallurgical manufacture

用于智能冶金制造的微观结构敏感机器学习

基本信息

  • 批准号:
    2896858
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Neural networks and machine learning (ML) algorithms have been used in materials science and engineering for some years now and have even yielded successes in developing new materials and novel manufacturing methods. However, the majority of this research is based upon learning data sets that try to link numerical materials property data to the manufacturing process variables. Such approaches have limited potential, because the microscopic structure of the materials that actually determines the properties and its evolution during processing is not taken into account explicitly. As a result, the trained ML models are able to interpolate well the possibilities that fall with the domain of the training data, but often fail to make viable predictions outside of it. Thus, potentially superior novel processing methods and materials with improved properties can remain undiscovered.The project will address this capability gap by developing a ML methodology that will incorporate not only the alloy properties and processing route information, but also the corresponding microstructural data from materials characterisation experiments and from computer simulations. The training set will also incorporate established physical laws for microstructural evolution and will seek out deviations and nuances in the training data that may warrant further scientific scrutiny, as well as allow predictive extrapolation outside the training set domain. I.e. in addition to being able to "join the dots" the approach will allow "plotting new dots in uncharted territory". Research plan: The project will develop a training set for ML algorithms in the form of a database built up from available published research data on the development and industrial processing of superalloys. The database will collate alloy compositions, full production routes, mechanical properties, environmental degradation resistance, cost and energy consumption and will relate these to the images of the microstructure and other experimental data. The images will be processed and analysed to measure key geometrical parameters of the microstructure such as the grain size distribution and precipitate size distribution which govern base mechanical performance, as well as undesirable features that may result from optimal processing such as the distribution of undesirable detrimental phases and defects including cracks, voids, tears, etc. which adversely affect the product lifetime and reliability. Research data from computer simulations will also be used in the database alongside the experimental data. However, the end user will be able to chose of the ML predictions are made from solely experimental data, theoretical simulations or both. Project objectives:(1) Creation of a database containing the unique material "fingerprints" of a broad range of superalloys combining numerical composition, property and material production data with 2d and 3d microstructure imaging data from microscopy and x-ray scattering. (2) Interfacing the database with suitable ML algorithms that will be able to solve the relevant regression and/or classification problems. Generation of a flexible and powerful metadata structure will be essential to this. (3) Use of the database as the ML training set to establish trends and patterns in the data.(4) Validation of the predictive capability of the training set and established mathematical trends against known physical laws for microstructure evolution and phase field computer simulations, as well as experiments where appropriate.
神经网络和机器学习 (ML) 算法已在材料科学和工程中使用多年,甚至在开发新材料和新型制造方法方面取得了成功。然而,这项研究的大部分都是基于学习数据集,这些数据集试图将数值材料属性数据与制造过程变量联系起来。这种方法的潜力有限,因为实际上决定性能及其在加工过程中演变的材料微观结构没有被明确考虑。因此,经过训练的机器学习模型能够很好地插值训练数据域内的可能性,但通常无法在训练数据域之外做出可​​行的预测。因此,可能尚未发现具有改进性能的新型加工方法和材料。该项目将通过开发一种机器学习方法来解决这一能力差距,该方法不仅包含合金特性和加工路线信息,还包含来自材料表征的相应微观结构数据实验和计算机模拟。训练集还将纳入微观结构演化的既定物理定律,并将找出训练数据中可能需要进一步科学审查的偏差和细微差别,并允许在训练集域之外进行预测外推。 IE。除了能够“连接点”之外,该方法还将允许“在未知领域绘制新点”。研究计划:该项目将以数据库的形式开发机器学习算法的训练集,该数据库是根据有关高温合金开发和工业加工的可用已发表研究数据构建的。该数据库将整理合金成分、完整的生产路线、机械性能、耐环境降解性、成本和能源消耗,并将这些与微观结构图像和其他实验数据联系起来。对图像进行处理和分析,以测量微观结构的关键几何参数,例如决定基本机械性能的晶粒尺寸分布和沉淀物尺寸分布,以及优化处理可能产生的不良特征,例如不良有害相的分布以及缺陷,包括裂纹、空隙、撕裂等,对产品寿命和可靠性产生不利影响。来自计算机模拟的研究数据也将与实验数据一起用于数据库中。然而,最终用户将能够选择仅根据实验数据、理论模拟或两者进行的 ML 预测。项目目标:(1) 创建一个数据库,其中包含各种高温合金的独特材料“指纹”,将数值成分、性能和材料生产数据与来自显微镜和 X 射线散射的 2D 和 3D 微观结构成像数据相结合。 (2) 将数据库与合适的机器学习算法连接起来,这些算法将能够解决相关的回归和/或分类问题。生成灵活且强大的元数据结构对此至关重要。 (3) 使用数据库作为 ML 训练集来建立数据中的趋势和模式。(4) 根据微观结构演化和相场计算机模拟的已知物理定律验证训练集的预测能力和建立的数学趋势,以及适当的实验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Acute sleep deprivation increases inflammation and aggravates heart failure after myocardial infarction.
Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO(2) Separation.
  • DOI:
    10.3390/membranes12121262
  • 发表时间:
    2022-12-13
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于孕灾敏感性—有效降雨强度模型的区域滑坡危险性预警机理研究
  • 批准号:
    41807285
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
面向网络视频直播的敏感信息实时检测技术研究
  • 批准号:
    61772060
  • 批准年份:
    2017
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
管理与决策大数据的模式识别与敏感内容挖掘研究
  • 批准号:
    91746209
  • 批准年份:
    2017
  • 资助金额:
    240.0 万元
  • 项目类别:
    重大研究计划
基于机器学习算法的城区建筑能耗不确定性及敏感性研究
  • 批准号:
    51778416
  • 批准年份:
    2017
  • 资助金额:
    51.0 万元
  • 项目类别:
    面上项目
具有轮地敏感性的球形机器人磁流变主动抑振控制研究
  • 批准号:
    61175101
  • 批准年份:
    2011
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目

相似海外基金

Advanced machine learning to empower ultra-sensitive liquid biopsy in melanoma and non-small cell lung cancer
先进的机器学习使黑色素瘤和非小细胞肺癌的超灵敏液体活检成为可能
  • 批准号:
    10591304
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Novel Framework for Sensitive and Reliable Early Diagnosis, Topographic Mapping, and Stiffness Classification of Colorectal Cancer Polyps
一种用于结直肠癌息肉敏感且可靠的早期诊断、地形测绘和硬度分类的新框架
  • 批准号:
    10742476
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Physics-informed Machine Learning approach for a selective, sensitive, and rapid sensor for detecting unsafe levels of carcinogenic/toxic VOCs
基于物理的机器学习方法,用于选择性、灵敏且快速的传感器,用于检测致癌/有毒 VOC 的不安全水平
  • 批准号:
    10600819
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Mechanistic Principles of SNARE Disassembly in Neurotransmitter Release
神经递质释放中 SNARE 分解的机制原理
  • 批准号:
    10824093
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Stereo-sensitive molecular descriptors for machine learning approach to design of asymmetric catalysts
用于设计不对称催化剂的机器学习方法的立体敏感分子描述符
  • 批准号:
    23K16936
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了