New developments in geometric Fourier analysis

几何傅里叶分析的新进展

基本信息

  • 批准号:
    2620030
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

This project aims to harness the power of a variety of newly available tools in harmonic analysis to study classical objects such as geometric maximal functions. One possible direction is to study variants of Bougain's circular maximal function. This operator acts on functions on the Euclidean plane by taking maximal averages over concentric circles. It is intimatelyrelated to the behaviour of space/time averages of solutions to the linear wave equation. Recently, the local smoothing conjecture for the wave equation was established by Guth--Wang--Zhang. This conjecture implies (and is substantially stronger than) Bourgain's circular maximal function theorem, as well as many other classical results in harmonic analysissuch as the Bochner--Riesz and restriction conjectures in 2 dimensions. The proof of the local smoothing conjecture involves a powerful Littlewood--Paley square function inequality for functions frequency supported near the lightcone. This inequality, and the methods used to prove it, are likely to have a broad range of further applications and it is of great interest to explore other situations where they may apply.
该项目旨在利用调和分析中各种新可用工具的强大功能来研究几何最大函数等经典对象。一个可能的方向是研究 Bougain 循环极大函数的变体。该算子通过在同心圆上取最大平均值来作用于欧几里得平面上的函数。它与线性波动方程解的空间/时间平均值的行为密切相关。最近,Guth--Wang--Zhang 建立了波动方程的局部平滑猜想。这个猜想暗示了(并且明显强于)布尔干的圆极大函数定理,以及调和分析中的许多其他经典结果,例如 Bochner--Riesz 和二维限制猜想。局部平滑猜想的证明涉及光锥附近支持的函数频率的强大的 Littlewood-Paley 平方函数不等式。这种不等式以及用于证明它的方法可能会具有广泛的进一步应用,并且探索它们可能适用的其他情况非常有趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Interactive comment on “Source sector and region contributions to BC and PM 2 . 5 in Central Asia” by
关于“来源部门和地区对中亚 BC 和 PM 5 的贡献”的互动评论。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Vortex shedding analysis of flows past forced-oscillation cylinder with dynamic mode decomposition
采用动态模态分解对流过受迫振荡圆柱体的流进行涡流脱落分析
  • DOI:
    10.1063/5.0153302
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Observation of a resonant structure near the D + s D − s threshold in the B + → D + s D − s K + decay
观察 B – D s D – s K 衰减中 D s D – s 阈值附近的共振结构
Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 OBSERVATIONS OF RAPID DISK-JET INTERACTION IN THE MICROQUASAR GRS 1915+105
接受《天体物理学杂志》预印本排版,使用 L ATEX 样式 emulateapj v. 6/22/04 观测微类星体 GRS 中的快速盘射流相互作用 1915 105
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
The Evolutionary Significance of Phenotypic Plasticity
表型可塑性的进化意义
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
  • 批准号:
    2908923
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
  • 批准号:
    2903298
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Landscapes of Music: The more-than-human lives and politics of musical instruments
音乐景观:超越人类的生活和乐器的政治
  • 批准号:
    2889655
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Recent Developments on Geometric Measure Theory and its Applications
几何测度理论及其应用的最新进展
  • 批准号:
    2001095
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Developments and Applications of Geometric Singularity Theory
几何奇点理论的发展与应用
  • 批准号:
    19K03458
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments in Geometric Analysis of the initial value problem for dispersive flow equation
弥散流方程初值问题的几何分析进展
  • 批准号:
    16K05235
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments and applications of geometric singularity theory
几何奇点理论的发展与应用
  • 批准号:
    15H03615
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New Developments in Geometric and Multiscale Numerical Methods
几何和多尺度数值方法的新进展
  • 批准号:
    1522337
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了