New Developments in Geometric and Multiscale Numerical Methods

几何和多尺度数值方法的新进展

基本信息

  • 批准号:
    1522337
  • 负责人:
  • 金额:
    $ 23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

This research project will study representation and approximation of complex data structures involving geometrical configurations and shapes. The methods developed in this project will shed light on questions such as: Why do human red blood cells have a bi-concave donut shape instead of, say, a peanut shape? It is known that the lipid bilayer is the most elementary and indispensable structural component of biological membranes that form the boundary of all cells. To understand the amazing variety of different shapes they exhibit, biophysicists strive to find an accurate mathematical model for such bio-membranes. With the mathematical and computational techniques under development in this project, the solution of such models can be obtained accurately and efficiently. Similar mathematical techniques can also be applied to unravel white matter structure from diffusion tensor magnetic resonance images (DT-MRI) of the brain and to predict, in real-time, a life-threatening phenomenon called aerodynamic flutter in air transportation. These will help diagnose psychiatric disorders and save lives of pilots and passengers. The project studies multi-scale representation and approximation of manifold-valued data, reduced order modeling, as well as design of numerical algorithms that respect the geometric or topological characteristics of the underlying problem. In particular, this research addresses the following: I. Approximation of manifold-valued data (scattered manifold-valued data and reduced order modeling, and theory of nonlinear subdivision algorithms); II. New multi-scale geometric modeling tools (numerical simulation of lipid bilayers, subdivision differential forms for genus 0 topology, and 3-D subdivision methods). The research will combine techniques from mathematical analysis, geometry, numerical analysis, optimization theory, and computing to advance the understanding of applied geometry problems.
该研究项目将研究涉及几何配置和形状的复杂数据结构的表示和近似。该项目开发的方法将揭示以下问题:为什么人类红细胞具有双凹甜甜圈形状,而不是花生形状?众所周知,脂质双层是构成所有细胞边界的生物膜最基本和不可缺少的结构成分。为了了解它们所表现出的各种不同形状,生物物理学家努力为此类生物膜找到准确的数学模型。利用该项目正在开发的数学和计算技术,可以准确有效地获得此类模型的解。类似的数学技术也可用于从大脑的扩散张量磁共振图像(DT-MRI)中解开白质结构,并实时预测航空运输中一种称为气动颤振的危及生命的现象。这些将有助于诊断精神疾病并挽救飞行员和乘客的生命。该项目研究流形值数据的多尺度表示和近似、降阶建模以及尊重潜在问题的几何或拓扑特征的数值算法的设计。具体而言,本研究涉及以下内容: 一、流形值数据的逼近(离散流形值数据和降阶建模、非线性细分算法理论);二.新的多尺度几何建模工具(脂质双层的数值模拟、0 属拓扑的细分微分形式和 3-D 细分方法)。该研究将结合数学分析、几何、数值分析、优化理论和计算技术,以增进对应用几何问题的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Yu其他文献

Leveraging crowdsourcing to accelerate global health solutions
利用众包加速全球健康解决方案
  • DOI:
    10.1038/s41587-019-0180-5
  • 发表时间:
    2019-07-19
  • 期刊:
  • 影响因子:
    46.9
  • 作者:
    Sage Z Davis;Katrina A. Button;Taoufik Bensellak;Eren Ahsen;L. Checkley;Gabriel J. Foster;X. Su;A. Moussa;Darlington S. Mapiye;S. Khoo;F. Nosten;T. Anderson;Katelyn M. Vendrely;Julie A. Bletz;Thomas Yu;Sumir Panji;Amel Ghouila;N. Mulder;Thea C. Norman;Steven Edward Kern;Pablo Meyer;G. Stolovitzky;M. Ferdig;Geoffrey H. Siwo
  • 通讯作者:
    Geoffrey H. Siwo
The NLP Sandbox: an efficient model-to-data system to enable federated and unbiased evaluation of clinical NLP models
NLP 沙箱:一种高效的模型到数据系统,可对临床 NLP 模型进行联合且公正的评估
  • DOI:
    10.48550/arxiv.2206.14181
  • 发表时间:
    2022-06-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yao Yan;Thomas Yu;Kathleen Muenzen;Sijia Liu;Connor Boyle;George Koslowski;Jiaxin Zheng;Nicholas J. Dobbins;Clement Essien;Hongfang Liu;L. Omberg;Meliha Yestigen;Bradley Taylor;James A. Eddy;J. Guinney;S. Mooney;T. Schaffter
  • 通讯作者:
    T. Schaffter
Robust T2 Relaxometry With Hamiltonian MCMC for Myelin Water Fraction Estimation
使用哈密顿量 MCMC 进行稳健的 T2 弛豫测量,用于估计髓磷脂水分数
Benefitting from Bicubically Down-Sampled Images for Learning Real-World Image Super-Resolution
受益于双三次下采样图像来学习真实世界图像超分辨率
  • DOI:
  • 发表时间:
    2020-07-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohammad Saeed Rad;Thomas Yu;C. Musat;H. K. Ekenel;Behzad Bozorgtabar;J. Thiran
  • 通讯作者:
    J. Thiran
Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms
结合人工智能和放射科医生评估来解读筛查性乳房 X 光检查的评估
  • DOI:
    10.1001/jamanetworkopen.2020.0265
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    13.8
  • 作者:
    T. Schaffter;D. Buist;Christoph I. Lee;Yaroslav Nikulin;D. Ribli;Y. Guan;William Lotter;Zequn Jie;Hao Du;Sijia Wang;Jiashi Feng;Mengling Feng;Hyo;F. Albiol;A. Albiol;Stephen Morrell;Z. Wojna;M. Ahsen;U. Asif;Antonio José Jimeno Yepes;Shivanthan A. C. Yohan;an;an;S. Rabinovici;Darvin Yi;B. Hoff;Thomas Yu;E. Chaibub Neto;D. Rubin;Peter Lindholm;L. Margolies;R. McBride;J. Rothstein;W. Sieh;Rami Ben;S. Harrer;A. Trister;S. Friend;Thea C. Norman;B. Sahiner;Fredrik Str;J. Guinney;G. Stolovitzky;Lester W. Mackey;Joyce Cahoon;Li Shen;J. Sohn;H. Trivedi;Yiqiu Shen;L. Buturovic;José Costa Pereira;Jaime S. Cardoso;Eduardo Castro;K. T. Kalleberg;Obioma Pelka;Imane Nedjar;Krzysztof J. Geras;F. Nensa;Ethan Goan;S. Koitka;Luis Caballero;David D. Cox;Pavitra Krishnaswamy;G. P;ey;ey;C. Friedrich;Dimitri Perrin;C. Fookes;Bibo Shi;Gerard Cardoso Negrie;M. Kawczynski;Kyunghyun Cho;Can Son Khoo;Joseph Y. Lo;A. Sorensen;Hwejin Jung
  • 通讯作者:
    Hwejin Jung

Thomas Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Yu', 18)}}的其他基金

Geometric Approximation and Variational Problems
几何逼近和变分问题
  • 批准号:
    1913038
  • 财政年份:
    2019
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Topics in Geometric and Multiscale Numerical Methods
几何和多尺度数值方法主题
  • 批准号:
    1115915
  • 财政年份:
    2011
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Multiscale Modeling and Approximation in Novel Geometric and Nonlinear Settings
新颖几何和非线性设置中的多尺度建模和逼近
  • 批准号:
    0915068
  • 财政年份:
    2009
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Multiscale Data Representations in Geometric and Nonlinear Settings
几何和非线性设置中的多尺度数据表示
  • 批准号:
    0542237
  • 财政年份:
    2005
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
CAREER: Subdivision Schemes and Wavelets: New Tools, New Settings
职业:细分方案和小波:新工具,新设置
  • 批准号:
    9984501
  • 财政年份:
    2000
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于环形光栅的转轴几何误差动态同时测量方法与关键技术研究
  • 批准号:
    52375523
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于多视角几何与光度学的光栅投影动态三维全貌测量方法研究
  • 批准号:
    62305055
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于试件面形分布的五轴超精密加工动态几何误差辨识与逆向补偿方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向动态、高维全息复用的液晶几何相位超结构研究
  • 批准号:
    62175101
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
质量和复杂度可调节的动态3D点云几何视频压缩研究
  • 批准号:
    62001209
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New developments in geometric Fourier analysis
几何傅里叶分析的新进展
  • 批准号:
    2620030
  • 财政年份:
    2021
  • 资助金额:
    $ 23万
  • 项目类别:
    Studentship
Recent Developments on Geometric Measure Theory and its Applications
几何测度理论及其应用的最新进展
  • 批准号:
    2001095
  • 财政年份:
    2020
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Developments and Applications of Geometric Singularity Theory
几何奇点理论的发展与应用
  • 批准号:
    19K03458
  • 财政年份:
    2019
  • 资助金额:
    $ 23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments in Geometric Analysis of the initial value problem for dispersive flow equation
弥散流方程初值问题的几何分析进展
  • 批准号:
    16K05235
  • 财政年份:
    2016
  • 资助金额:
    $ 23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments and applications of geometric singularity theory
几何奇点理论的发展与应用
  • 批准号:
    15H03615
  • 财政年份:
    2015
  • 资助金额:
    $ 23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了