Investigation of materials and devices for organic photovoltaics by EPR and EDMR

通过 EPR 和 EDMR 研究有机光伏材料和器件

基本信息

  • 批准号:
    2604988
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

This research project will study fundamental processes in materials and devices for organic photovoltaic systems through investigation by EPR (Electron Paramagnetic Resonance) and EDMR (Electrically Detected Magnetic Resonance) spectroscopy. It primarily falls within the EPSRC Analytical Science and Materials for Energy Applications research areas within the Physical Sciences theme and has practical applications to the Energy theme as well.Organic photovoltaic systems involve a blend of donor and acceptor molecules that, after excitation by light, form singlet excitons that can then dissociate into a spin-correlated radical pair by charge transfer at a donor-acceptor interface. This radical pair is characterised by coupled unpaired electron spins that can be detected by EPR spectroscopy. Efficient charge separation over recombination of the radical pair is critical for an effective organic photovoltaic system.In the past, EPR and EDMR spectroscopy have been used to investigate a range of different spin centres in silicon solar cells and in fullerene-based organic solar cells. Currently, research in organic photovoltaics is focused on non-fullerene acceptors that have led to increased energy conversion efficiencies. Photovoltaic cells based on non-fullerene acceptors have been showing tremendous growth in efficiency in the last decade at a much faster rate than similar fullerene-based acceptors. Since EPR and EDMR can follow the evolution from a charge-transfer state to separated charges, the aim of the project is to use these methods to gain a better insight into this process for donor- acceptor blends including state-of-the-art non-fullerene acceptors. Different continuous-wave and pulse EPR and EDMR experiments will be used to characterise the nature and dynamics of the spin centres in materials for organic photovoltaics. In particular, the interactions of the spin centres with their molecular environment, including hyperfine interactions to nearby magnetic nuclei and dipolar and exchange interactions between spin centres, will be investigated using advanced pulse EPR and EDMR techniques. The aim is to gain molecular-level insight into the charge separation, recombination, and transport processes relevant for solar cell operation and to identify molecular requirements for efficient energy conversion. Recent developments in digital electronics have enabled the integration of shaped pulses into pulse EPR sequences. Compared to traditional rectangular pulses, shaped pulses allow increased spin control and the design of new experiments with increased sensitivity and with increased accuracy in the characterisation of magnetic interactions. Shaped pulses have been demonstrated to achieve increased sensitivity for structural characterisation of biological systems by EPR but have so far not been used to aid the investigation of spin centres in materials for organic electronics. This project will involve development of EPR experiments tailored to exploit the advantages of shaped pulses in the characterisation of spins in these materials. Within EDMR, the use of shaped pulses is currently still largely unexplored, therefore, this project will also aim to develop the pulse EDMR method further through the inclusion of shaped pulses and the design of novel pulse sequences that leverage the increased spin control they provide. This project, at the interface of physics, chemistry, and materials science, is aligned with the EPSRC's focus on interdisciplinarity in research. The insights gained from EPR and EDMR spectroscopy on the fundamental processes involved in the conversion of solar energy to electricity in organic photovoltaics will have great significance for the field of solar energy technology. The developed methods and approaches are additionally relevant to many other research areas within the Physical Sciences theme, including optoelectronics, spintronics and quantum computing.
该研究项目将通过 EPR(电子顺磁共振)和 EDMR(电检测磁共振)光谱研究来研究有机光伏系统材料和器件的基本过程。它主要属于 EPSRC 物理科学主题内的分析科学和能源应用材料研究领域,并且也具有能源主题的实际应用。有机光伏系统涉及供体和受体分子的混合物,在光激发后,形成单线态激子然后可以通过供体-受体界面处的电荷转移解离成自旋相关的自由基对。该自由基对的特征是耦合的不成对电子自旋,可以通过 EPR 光谱检测到。自由基对重组过程中的有效电荷分离对于有效的有机光伏系统至关重要。过去,EPR 和 EDMR 光谱已被用于研究硅太阳能电池和基于富勒烯的有机太阳能电池中的一系列不同自旋中心。目前,有机光伏的研究主要集中在非富勒烯受体上,这些受体可以提高能量转换效率。在过去十年中,基于非富勒烯受体的光伏电池在效率方面表现出巨大的增长,其速度比类似的基于富勒烯的受体快得多。由于 EPR 和 EDMR 可以跟踪从电荷转移状态到分离电荷的演变,因此该项目的目的是使用这些方法更好地了解供体-受体混合物的这一过程,包括最先进的非-富勒烯受体。不同的连续波和脉冲 EPR 和 EDMR 实验将用于表征有机光伏材料中自旋中心的性质和动态。特别是,将使用先进的脉冲 EPR 和 EDMR 技术研究自旋中心与其分子环境的相互作用,包括与附近磁核的超精细相互作用以及自旋中心之间的偶极和交换相互作用。目的是在分子水平上深入了解与太阳能电池操作相关的电荷分离、重组和传输过程,并确定有效能量转换的分子要求。数字电子学的最新发展使得整形脉冲能够集成到脉冲 EPR 序列中。与传统的矩形脉冲相比,整形脉冲可以增强自旋控制并设计新的实验,从而提高磁相互作用表征的灵敏度和准确性。整形脉冲已被证明可以通过 EPR 提高生物系统结构表征的灵敏度,但迄今为止尚未用于帮助研究有机电子材料中的自旋中心。该项目将涉及 EPR 实验的开发,旨在利用整形脉冲在这些材料的自旋表征中的优势。在 EDMR 中,整形脉冲的使用目前在很大程度上尚未得到探索,因此,该项目还将旨在通过纳入整形脉冲和设计利用其提供的增强自旋控制的新型脉冲序列来进一步开发脉冲 EDMR 方法。该项目涉及物理、化学和材料科学,与 EPSRC 对跨学科研究的关注相一致。从 EPR 和 EDMR 光谱中获得的关于有机光伏中太阳能转化为电能的基本过程的见解将对太阳能技术领域具有重要意义。所开发的方法和方法还与物理科学主题内的许多其他研究领域相关,包括光电子学、自旋电子学和量子计算。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Products Review
  • DOI:
    10.1177/216507996201000701
  • 发表时间:
    1962-07
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
  • 通讯作者:
Farmers' adoption of digital technology and agricultural entrepreneurial willingness: Evidence from China
  • DOI:
    10.1016/j.techsoc.2023.102253
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
  • 通讯作者:
Digitization
References
Putrescine Dihydrochloride
  • DOI:
    10.15227/orgsyn.036.0069
  • 发表时间:
    1956-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

极端超高压设备加热元件材料研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
环保型全氟己酮混合绝缘气体与设备内部关键材料在放电和过热条件下相容性研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
高湿环境下煤尘与材料表面的粘附机理研究及抑粘表面设计
  • 批准号:
    51905535
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于金属氧化物气敏传感器的空气绝缘电力设备放电分解特征组分检测方法研究
  • 批准号:
    51877170
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于特殊浸润多孔材料的海洋油污在线监测技术和应急处理装备的应用基础研究
  • 批准号:
    U1809213
  • 批准年份:
    2018
  • 资助金额:
    200.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

Investigation of new advanced materials and structures for development of energy harvesting devices
研究用于开发能量收集装置的新型先进材料和结构
  • 批准号:
    2891963
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Cryopreservation and nanowarming enables whole liver banking for transplantation, cell therapy and biomedical research
冷冻保存和纳米加温使整个肝脏库能够用于移植、细胞治疗和生物医学研究
  • 批准号:
    10584878
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Promoting Rapid Uptake of Multilevel Latent Class Modeling via Best Practices: Investigating Heterogeneity in Daily Substance Use Patterns
通过最佳实践促进多级潜在类建模的快速采用:调查日常物质使用模式的异质性
  • 批准号:
    10739994
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Nanostructured surfaces with improved hemocompatibility
具有改善血液相容性的纳米结构表面
  • 批准号:
    10686166
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Rapidly healing flow diverters using magnetic cell targeting for intracranial aneurysm treatment
使用磁性细胞靶向治疗颅内动脉瘤的快速愈合分流器
  • 批准号:
    10629368
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了