Investigation of materials and devices for organic photovoltaics by EPR and EDMR
通过 EPR 和 EDMR 研究有机光伏材料和器件
基本信息
- 批准号:2604988
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project will study fundamental processes in materials and devices for organic photovoltaic systems through investigation by EPR (Electron Paramagnetic Resonance) and EDMR (Electrically Detected Magnetic Resonance) spectroscopy. It primarily falls within the EPSRC Analytical Science and Materials for Energy Applications research areas within the Physical Sciences theme and has practical applications to the Energy theme as well.Organic photovoltaic systems involve a blend of donor and acceptor molecules that, after excitation by light, form singlet excitons that can then dissociate into a spin-correlated radical pair by charge transfer at a donor-acceptor interface. This radical pair is characterised by coupled unpaired electron spins that can be detected by EPR spectroscopy. Efficient charge separation over recombination of the radical pair is critical for an effective organic photovoltaic system.In the past, EPR and EDMR spectroscopy have been used to investigate a range of different spin centres in silicon solar cells and in fullerene-based organic solar cells. Currently, research in organic photovoltaics is focused on non-fullerene acceptors that have led to increased energy conversion efficiencies. Photovoltaic cells based on non-fullerene acceptors have been showing tremendous growth in efficiency in the last decade at a much faster rate than similar fullerene-based acceptors. Since EPR and EDMR can follow the evolution from a charge-transfer state to separated charges, the aim of the project is to use these methods to gain a better insight into this process for donor- acceptor blends including state-of-the-art non-fullerene acceptors. Different continuous-wave and pulse EPR and EDMR experiments will be used to characterise the nature and dynamics of the spin centres in materials for organic photovoltaics. In particular, the interactions of the spin centres with their molecular environment, including hyperfine interactions to nearby magnetic nuclei and dipolar and exchange interactions between spin centres, will be investigated using advanced pulse EPR and EDMR techniques. The aim is to gain molecular-level insight into the charge separation, recombination, and transport processes relevant for solar cell operation and to identify molecular requirements for efficient energy conversion. Recent developments in digital electronics have enabled the integration of shaped pulses into pulse EPR sequences. Compared to traditional rectangular pulses, shaped pulses allow increased spin control and the design of new experiments with increased sensitivity and with increased accuracy in the characterisation of magnetic interactions. Shaped pulses have been demonstrated to achieve increased sensitivity for structural characterisation of biological systems by EPR but have so far not been used to aid the investigation of spin centres in materials for organic electronics. This project will involve development of EPR experiments tailored to exploit the advantages of shaped pulses in the characterisation of spins in these materials. Within EDMR, the use of shaped pulses is currently still largely unexplored, therefore, this project will also aim to develop the pulse EDMR method further through the inclusion of shaped pulses and the design of novel pulse sequences that leverage the increased spin control they provide. This project, at the interface of physics, chemistry, and materials science, is aligned with the EPSRC's focus on interdisciplinarity in research. The insights gained from EPR and EDMR spectroscopy on the fundamental processes involved in the conversion of solar energy to electricity in organic photovoltaics will have great significance for the field of solar energy technology. The developed methods and approaches are additionally relevant to many other research areas within the Physical Sciences theme, including optoelectronics, spintronics and quantum computing.
该研究项目将通过EPR(电子顺磁共振)和EDMR(电检测到的磁共振)光谱研究来研究有机光伏系统材料和设备的基本过程。 It primarily falls within the EPSRC Analytical Science and Materials for Energy Applications research areas within the Physical Sciences theme and has practical applications to the Energy theme as well.Organic photovoltaic systems involve a blend of donor and acceptor molecules that, after excitation by light, form singlet excitons that can then dissociate into a spin-correlated radical pair by charge transfer at a donor-acceptor interface.这种自由基对以EPR光谱法检测到的未配对电子旋转的特征是。对激进对重组的有效电荷分离对于有效的有机光伏系统至关重要。目前,有机光伏研究的研究集中在导致能量转化效率提高的非富勒烯受体上。在过去十年中,基于非富勒烯受体的光伏细胞在效率上一直显示出巨大的增长,速度比基于富勒烯的类似受体快得多。由于EPR和EDMR可以遵循从电荷转移状态到分开的指控的演变,因此该项目的目的是使用这些方法来更好地了解包括先进的非熟料受体在内的捐助者混合物。不同的连续波和脉冲EPR和EDMR实验将用于表征有机光伏材料中自旋中心的性质和动力学。特别是,将使用先进的脉冲EPR和EDMR技术研究自旋中心与它们的分子环境的相互作用,包括与附近磁性核和偶极相互作用以及自旋中心之间的交换相互作用的相互作用。目的是获得与太阳能电池运行相关的电荷分离,重组和运输过程的分子级别的见解,并确定有效能量转化的分子需求。数字电子产品的最新发展使形状脉冲将其整合到脉冲EPR序列中。与传统的矩形脉冲相比,形状脉冲可以增加自旋对照和新实验的设计,并具有提高灵敏度,并且在磁相互作用的表征上的准确性提高。已经证明了形状脉冲可以提高EPR对生物系统结构表征的敏感性,但迄今尚未用于帮助研究有机电子材料中的自旋中心。该项目将涉及为开发用于利用形状脉冲在这些材料中旋转表征的优势的EPR实验的开发。在EDMR中,目前仍未探索形状脉冲的使用,因此,该项目还将通过包含形状的脉冲和新型脉冲序列的设计来进一步开发脉冲EDMR方法,从而利用其提供的增加的自旋控制。该项目在物理,化学和材料科学的界面上与EPSRC对研究中的跨学科性的关注一致。从EPR和EDMR光谱中获得的见解对有机光伏中太阳能转化为电力的基本过程将对太阳能技术领域具有重要意义。开发的方法和方法还与物理科学主题中的许多其他研究领域有关,包括光电子,旋转型和量子计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
极端超高压设备加热元件材料研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
极端超高压设备加热元件材料研究
- 批准号:22105228
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
环保型全氟己酮混合绝缘气体与设备内部关键材料在放电和过热条件下相容性研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
高湿环境下煤尘与材料表面的粘附机理研究及抑粘表面设计
- 批准号:51905535
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于金属氧化物气敏传感器的空气绝缘电力设备放电分解特征组分检测方法研究
- 批准号:51877170
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Investigation of new advanced materials and structures for development of energy harvesting devices
研究用于开发能量收集装置的新型先进材料和结构
- 批准号:
2891963 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Cryopreservation and nanowarming enables whole liver banking for transplantation, cell therapy and biomedical research
冷冻保存和纳米加温使整个肝脏库能够用于移植、细胞治疗和生物医学研究
- 批准号:
10584878 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Promoting Rapid Uptake of Multilevel Latent Class Modeling via Best Practices: Investigating Heterogeneity in Daily Substance Use Patterns
通过最佳实践促进多级潜在类建模的快速采用:调查日常物质使用模式的异质性
- 批准号:
10739994 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Nanostructured surfaces with improved hemocompatibility
具有改善血液相容性的纳米结构表面
- 批准号:
10686166 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Rapidly healing flow diverters using magnetic cell targeting for intracranial aneurysm treatment
使用磁性细胞靶向治疗颅内动脉瘤的快速愈合分流器
- 批准号:
10629368 - 财政年份:2022
- 资助金额:
-- - 项目类别: