Nanostructured surfaces with improved hemocompatibility
具有改善血液相容性的纳米结构表面
基本信息
- 批准号:10686166
- 负责人:
- 金额:$ 22.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-18 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAcidsAddressAdhesionsAdsorptionAlgaeAlkanesulfonatesAlloysAntioxidantsBiocompatible MaterialsBiologicalBiopolymersBloodBlood PlateletsBlood ProteinsBlood VesselsBlood coagulationCardiovascular systemCarrageenanCatecholsChemicalsChemistryCoagulation ProcessComplement ActivationComplexCorrosionDataDevelopmentDevicesEncapsulatedEndotheliumErythrocytesEvaluationEventExhibitsFailureFibrinForeign BodiesHealthcareHeart Valve ProsthesisHeart ValvesHemorrhageHeparinHuman bodyImmune responseImplantIn VitroInflammatoryInvestigationLeukocytesMedical DeviceModernizationModificationMolecular ConformationNanostructuresPlasmaPlasma ProteinsPlatelet ActivationPolymersPolysaccharidesProanthocyanidinsProceduresPropertyProteinsResearchResearch ProposalsResistanceRiskSourceStentsSulfateSurfaceThrombosisTitaniaTitaniumWhole BloodWorkanimal tissueantimicrobialbiomaterial compatibilitycarboxymethylationcommon treatmentcostexperiencehemocompatibilityimplantable deviceimprovedin vivoin vivo evaluationmarinemechanical propertiesnanoscalenovelpathogenpreventrecruitresponserestenosisside effectsuccesssurface coatingthrombogenesistimelinewater treatment
项目摘要
PROJECT SUMMARY/ABSTRACT:
Blood-contacting medical devices, such as stents and heart valves, are common treatments in modern
healthcare. Every year, approximately 1 million and 90,000 stent and prosthetic heart valve procedures are
performed in the US, respectively. However, the use of these devices is associated with substantial risk of
thrombosis, and the rate of failure due to clot formation can be as high as 6%. When whole blood plasma comes
in contact with a foreign body (e.g., an implant), it leads to four main events capable of inducing a thrombogenic
response in vivo: protein adsorption, platelet adhesion/activation, leukocyte recruitment, and further activation of
complement and coagulation. Within seconds to minutes, key blood plasma proteins are adsorbed and undergo
conformational changes on the surface. This layer of adsorbed protein will allow subsequent adhesion and
activation of platelets, which promotes the formation of the fibrin clot, as well as the recruitment of leukocytes.
The platelets then initiate an inflammatory immune response and promote a complex cascade of events resulting
in thrombosis and/or fibrous encapsulation of the implant. Due to this complex foreign body response,
hemocompatibility has been a significant issue for blood-contacting medical devices. To address this challenge,
the development of novel biomaterials that can appropriately interact with blood and prevent thrombosis is vital
for the success of many implantable devices. In this work, we propose to prevent thrombosis on implants by
combining the promising properties of two biopolymers with nanoscale features on titania to develop a novel
blood-compatible surface. Biopolymers are good candidates for these applications, because of their compatibility
with the human body, biodegradability, processability and, in some cases, inherent antifouling and
antithrombogenic properties. Our preliminary results indicate that carboxymethylation of kappa-carrageenan with
monochloroacetic acid to form carboxymethyl-kappa-carrageenan (CMKC) improves the antithrombogenic
properties. CMKC is chemically similar to heparin and prevents thrombosis through multiple mechanisms.
However, CMKC is derived from algae, a renewable and low-cost source, while heparin is obtained from animal
tissues. Moreover, CMKC does not cause the side effects that heparin presents, such as bleeding effects. Our
group also has recently used of tanfloc (TA), a condensed tannin polymer as a biomaterial, and we have
demonstrated its promising cytocompatibility, antioxidant activity, antimicrobial, and antifouling properties.
Previous studies done by our group showed that the modification of titanium surfaces with TA and heparin
decreased the blood protein adsorption/activation, and platelet adhesion and activation. This work aims to
combine these promising properties of both biopolymers (CMKC and TA) to develop novel surfaces on titanium
that can prevent thrombosis.
项目摘要/摘要:
接触式医疗设备(例如支架和心脏瓣膜)是现代的常见治疗方法
卫生保健。每年,大约有100万和90,000个支架和假肢心脏阀程序是
分别在美国执行。但是,这些设备的使用与
血栓形成,凝块形成造成的故障率可能高达6%。当全血等离学到来时
与异物接触(例如植入物),它导致四个主要事件能够诱导血栓形成
体内反应:蛋白质吸附,血小板粘附/激活,白细胞募集以及进一步激活
补体和凝结。在几秒钟到几分钟之内,关键血浆蛋白被吸附并经历
表面上的构象变化。这层吸附蛋白将允许随后的粘附和
血小板的激活,促进纤维蛋白凝块的形成以及白细胞的募集。
然后,血小板发起炎症免疫反应,并促进一系列复杂的事件级联
在血栓形成和/或植入物的纤维封装中。由于这种复杂的异物反应,
对于血液接触医疗设备而言,血压相容性一直是一个重要的问题。为了应对这个挑战,
可以适当与血液相互作用并预防血栓形成的新型生物材料的发展至关重要
为了成功的许多植入设备。在这项工作中,我们建议通过
将两种生物聚合物的有前途的特性与二氧化钛上的纳米级特征相结合,以发展出一种新颖
血液兼容表面。生物聚合物是这些应用的好候选者,因为它们的兼容性
具有人体,可生物降解性,可加工性,在某些情况下是固有的防污和
抗巩膜的特性。我们的初步结果表明,Kappa-Carrageenan的羧甲基化
单氯乙酸形成羧甲基 - 卡帕 - 卡拉甘丹(CMKC),改善了抗积体
特性。 CMKC在化学上与肝素相似,并通过多种机制防止血栓形成。
但是,CMKC衍生自藻类,藻类是可再生和低成本的来源,而肝素是从动物那里获得的
组织。此外,CMKC不会引起肝素呈现的副作用,例如出血作用。我们的
Group最近还使用Tanfloc(TA),一种凝结的单宁聚合物作为生物材料,我们有
证明了其有希望的细胞相容性,抗氧化活性,抗菌和抗污染物。
我们小组进行的先前研究表明,用TA和肝素的钛表面修饰
减少了血液蛋白吸附/激活,血小板粘附和激活。这项工作旨在
结合两种生物聚合物(CMKC和TA)的这些有希望的特性,以在钛上发展新的表面
这可以防止血栓形成。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Antifouling Behavior of Copper-Modified Titania Nanotube Surfaces.
- DOI:10.3390/jfb14080413
- 发表时间:2023-08-04
- 期刊:
- 影响因子:4.8
- 作者:
- 通讯作者:
Expanding the Scope of an Amphoteric Condensed Tannin, Tanfloc, for Antibacterial Coatings.
- DOI:10.3390/jfb14110554
- 发表时间:2023-11-18
- 期刊:
- 影响因子:4.8
- 作者:
- 通讯作者:
Ligand Presentation Inside Protein Crystal Nanopores: Tunable Interfacial Adhesion Noncovalently Modulates Cell Attachment.
- DOI:10.1016/j.mtnano.2023.100432
- 发表时间:2023-11
- 期刊:
- 影响因子:0
- 作者:Dafu Wang;M. Hedayati;Julius D Stuart;L. Madruga;K. Popat;Christopher D. Snow;Mathew J Kipper
- 通讯作者:Dafu Wang;M. Hedayati;Julius D Stuart;L. Madruga;K. Popat;Christopher D. Snow;Mathew J Kipper
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Kipper其他文献
Matthew Kipper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Kipper', 18)}}的其他基金
Nanostructured surfaces with improved hemocompatibility
具有改善血液相容性的纳米结构表面
- 批准号:
10510050 - 财政年份:2022
- 资助金额:
$ 22.38万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深层碳酸盐岩酸蚀裂缝中反应-非线性两相流界面演化机制研究
- 批准号:52304047
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
核苷酸代谢酶氧化修饰调控上皮干细胞命运在口腔白斑病光动力治疗复发中的机制与意义研究
- 批准号:82330029
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
RNF31通过厚壁菌代谢产物3-氧代胆碱酸调控RORγ信号轴抑制Th17细胞分化—溃疡性结肠炎干预新靶点
- 批准号:82360112
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
氨基酸转运体调控非酒精性脂肪肝的模型建立及机制研究
- 批准号:32371222
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Toward synthetic chemically defined mRNA for human therapeutics
用于人类治疗的合成化学定义的 mRNA
- 批准号:
10649299 - 财政年份:2023
- 资助金额:
$ 22.38万 - 项目类别:
Lewis Base Ligands Designed to Control Carbon-Carbon Bond Formation
旨在控制碳-碳键形成的路易斯碱配体
- 批准号:
10713775 - 财政年份:2023
- 资助金额:
$ 22.38万 - 项目类别:
Rapid point-of-care detection of Trichomonas Vaginalis
快速即时检测阴道毛滴虫
- 批准号:
10699836 - 财政年份:2023
- 资助金额:
$ 22.38万 - 项目类别:
Infusion device optimization by addressing root causes of the inflammatory response
通过解决炎症反应的根本原因来优化输注装置
- 批准号:
10443241 - 财政年份:2022
- 资助金额:
$ 22.38万 - 项目类别: