Peptide Profiling Techniques to Detect Thyroid Carcinoma
检测甲状腺癌的肽分析技术
基本信息
- 批准号:6859786
- 负责人:
- 金额:$ 14.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-02-09 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:automated data processingbiomarkerbiotechnologyblood proteinscarcinomaclinical researchcomputer system design /evaluationdiagnosis design /evaluationdiagnosis quality /standardhigh throughput technologyhuman tissuematrix assisted laser desorption ionizationneoplasm /cancer diagnosisprotein sequenceproteomicsroboticsthyroid neoplasm
项目摘要
DESCRIPTION (provided by applicant): The information required for adequate diagnosis, treatment and monitoring of cancers is so complex that a panel of measurements, used in sum, may provide the best answers. The concept is embodied in SELDI-TOF mass spectrometric (MS) peptide profiling, an emerging technique for serum based cancer detection. Even though SELDI has thus far only produced low complexity spectra, the patterns, when analyzed as groups, have the potential to create learning algorithms with diagnostic accuracies as good as or better than conventional biomarkers. We have developed a system to capture peptides on magnetic reversed-phase beads, followed by MALDI-TOF MS, to yield increasingly complex, yet very reproducible patterns. This has clear advantages, as more displayed peptides provide more opportunity to select unique patterns ('barcodes') for cancer subtypes and stages, and to predict and monitor clinical outcome. Extreme care has also been taken to standardize specimen collection, handling and storage to avoid the introduction of artifact. Pilot projects at MSKCC with a variety of malignancies suggest that peptide patterns thus obtained appear to hold information that may have direct clinical utility. The goals of this project are to (i) automate our prototype serum peptide profiling platform and implement machine learning methods that use the resulting peptide patterns ('barcodes') for sample classification [R21]; and (ii) to test the 'barcode diagnostic' model in a high-throughput setting, using well defined and carefully observed groups of thyroid carcinoma patients [R33]. R21 aim one is to automate serum sample processing and analysis; aim two is to automate all data processing, to examine pattern selection and sample class prediction methods, and to integrate all software platforms; aim three is to develop routine MALDI-TOF/TOF tandem MS sequencing of 'barcode' peptides. R33 aim one is to define reproducibility of serum patterns in patients with thyroid disease; aim two is to determine barcodes that can distinguish patients with thyroid cancer from those with benign thyroid nodules; aim three is to assess if serum peptidome barcodes can identify occult metastasis in a large group of thyroid cancer survivors.
描述(由申请人提供):充分诊断、治疗和监测癌症所需的信息非常复杂,综合使用一组测量结果可以提供最佳答案。这一概念体现在 SELDI-TOF 质谱 (MS) 肽分析中,这是一种基于血清的癌症检测的新兴技术。尽管 SELDI 迄今为止仅产生了低复杂性光谱,但当将这些模式作为组进行分析时,有可能创建诊断精度与传统生物标志物一样好或更好的学习算法。我们开发了一种系统,用于在反相磁珠上捕获肽,然后进行 MALDI-TOF MS,以产生日益复杂但重现性非常好的模式。这具有明显的优势,因为更多展示的肽提供了更多机会来选择癌症亚型和阶段的独特模式(“条形码”),并预测和监测临床结果。我们还非常谨慎地标准化标本采集、处理和储存,以避免引入人工制品。 MSKCC 针对多种恶性肿瘤的试点项目表明,由此获得的肽模式似乎包含可能具有直接临床实用性的信息。该项目的目标是 (i) 自动化我们的原型血清肽分析平台并实施机器学习方法,使用生成的肽模式(“条形码”)进行样本分类 [R21]; (ii) 使用明确且仔细观察的甲状腺癌患者组在高通量环境中测试“条形码诊断”模型[R33]。 R21的目标一是自动化血清样本处理和分析;目标二是自动化所有数据处理,检查模式选择和样本类预测方法,并集成所有软件平台;目标三是开发“条形码”肽的常规 MALDI-TOF/TOF 串联 MS 测序。 R33 的目标一是确定甲状腺疾病患者血清模式的可重复性;目标二是确定能够区分甲状腺癌患者和良性甲状腺结节患者的条形码;目标三是评估血清肽组条形码是否可以识别大量甲状腺癌幸存者的隐匿性转移。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL TEMPST其他文献
PAUL TEMPST的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL TEMPST', 18)}}的其他基金
Protein and proteolytic activity biomarkers of early stage pancreatic cancer
早期胰腺癌的蛋白质和蛋白水解活性生物标志物
- 批准号:
10090577 - 财政年份:2017
- 资助金额:
$ 14.4万 - 项目类别:
Immobilized protease activity tests for developing functional cancer biomarkers.
用于开发功能性癌症生物标志物的固定化蛋白酶活性测试。
- 批准号:
9089598 - 财政年份:2014
- 资助金额:
$ 14.4万 - 项目类别:
Immobilized protease activity tests for developing functional cancer biomarkers.
用于开发功能性癌症生物标志物的固定化蛋白酶活性测试。
- 批准号:
8663557 - 财政年份:2014
- 资助金额:
$ 14.4万 - 项目类别:
Immobilized protease activity tests for developing functional cancer biomarkers.
用于开发功能性癌症生物标志物的固定化蛋白酶活性测试。
- 批准号:
8847684 - 财政年份:2014
- 资助金额:
$ 14.4万 - 项目类别:
Assessment of serum peptide profiling to detect cancer-specific patterns
评估血清肽谱以检测癌症特异性模式
- 批准号:
7231867 - 财政年份:2006
- 资助金额:
$ 14.4万 - 项目类别:
Assessment of serum peptide profiling to detect cancer-specific patterns
评估血清肽谱以检测癌症特异性模式
- 批准号:
7293621 - 财政年份:2006
- 资助金额:
$ 14.4万 - 项目类别:
Assessment of serum peptide profiling to detect cancer-specific patterns
评估血清肽谱以检测癌症特异性模式
- 批准号:
7688689 - 财政年份:2006
- 资助金额:
$ 14.4万 - 项目类别:
Assessment of serum peptide profiling to detect cancer-specific patterns
评估血清肽谱以检测癌症特异性模式
- 批准号:
7496071 - 财政年份:2006
- 资助金额:
$ 14.4万 - 项目类别:
Assessment of serum peptide profiling to detect cancer-specific patterns
评估血清肽谱以检测癌症特异性模式
- 批准号:
7925814 - 财政年份:2006
- 资助金额:
$ 14.4万 - 项目类别:
相似国自然基金
血清IgG N-糖肽作为诊断SLE的生物标志物研究
- 批准号:82360324
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于Bacillus subtilis 细胞传感器介导的肠道环境中结直肠癌相关生物标志物的动态检测策略
- 批准号:82372355
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于全转录组测序和蛋白质组学技术解析ATIC作为多发性骨髓瘤预后生物标志物与化疗抗性靶点的研究
- 批准号:82360411
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
线粒体DNA损伤的机制阐明及其作为农药亚致死性暴露生物标志物的应用
- 批准号:82373538
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
吉兰-巴雷综合征潜在生物标志物APOC3通过介导代谢重编程调控巨噬细胞极化的分子机制研究
- 批准号:82371359
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Novel Combinations of Natural Product Compounds for Treatment of Alzheimer Disease and Related Dementias
用于治疗阿尔茨海默病和相关痴呆症的天然产物化合物的新组合
- 批准号:
10603708 - 财政年份:2023
- 资助金额:
$ 14.4万 - 项目类别:
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 14.4万 - 项目类别:
Development of a targeted TGF-b therapeutic that selectively blocks lung fibrosis in idiopathic pulmonary fibrosis (IPF) patients
开发选择性阻断特发性肺纤维化 (IPF) 患者肺纤维化的靶向 TGF-b 疗法
- 批准号:
10697961 - 财政年份:2023
- 资助金额:
$ 14.4万 - 项目类别:
Molecular mechanisms of gap junction promotion of lesion formation in Endometriosis
间隙连接促进子宫内膜异位症病变形成的分子机制
- 批准号:
10772708 - 财政年份:2023
- 资助金额:
$ 14.4万 - 项目类别: