Algebraic topology and applications to photonic integrated circuits

代数拓扑及其在光子集成电路中的应用

基本信息

  • 批准号:
    2448207
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Photonic integrated circuits (PICs) offer unique opportunities to advance technology in areas such as computing, sensing and health care diagnostics but are still fully based on application specific chip design concepts. Application-specific photonic integrated circuits (ASPICs) are currently dominant PICs, in which particular circuits/chips are designed to optimally perform particular functionalities. They require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays (FPGAs) is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Realisation of such circuits is a crucial step in the wide deployment of PICs. In this project a mathematical model based on homotopy theory of hypergraphs and their persistent homology will be first developed and then implemented for the design of silicon photonics programmable circuits. The mathematical model will address optimisation of programmable PICs to perform many functionalities with minimum electrical and optical power consumptions and loss, and to address isolation of areas on the chip that are not operating correctly (e.g. due to fabrication errors or damages occurred during the operation) such that the PIC still can be performed all/majority of the functions it has been designed for.
光子集成电路(PIC)为计算、传感和医疗保健诊断等领域的技术进步提供了独特的机会,但仍然完全基于特定于应用的芯片设计概念。专用光子集成电路(ASPIC)是目前占主导地位的 PIC,其中特定电路/芯片被设计为以最佳方式执行特定功能。它们需要大量的设计和制造迭代,导致开发时间较长。受电子现场可编程门阵列(FPGA)启发的另一种方法是可编程光子处理器,其中由二维光子波导网格实现的通用硬件通过编程实现不同的功能。这种电路的实现是 PIC 广泛部署的关键一步。在该项目中,将首先开发基于超图同伦理论及其持久同源性的数学模型,然后将其用于硅光子可编程电路的设计。该数学模型将解决可编程 PIC 的优化问题,以最小的电和光功耗和损耗执行许多功能,并解决芯片上未正确运行的区域的隔离问题(例如,由于制造错误或运行期间发生的损坏)这样 PIC 仍然可以执行其设计的所有/大部分功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Acute sleep deprivation increases inflammation and aggravates heart failure after myocardial infarction.
Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO(2) Separation.
  • DOI:
    10.3390/membranes12121262
  • 发表时间:
    2022-12-13
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

模糊拓扑结构和凸结构的松代数表示及应用
  • 批准号:
    11971448
  • 批准年份:
    2019
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
Poisson几何、高阶结构及其在数学物理中的应用
  • 批准号:
    11471139
  • 批准年份:
    2014
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
分片代数曲线的若干理论及其应用
  • 批准号:
    11226329
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
代数图论和最优化方法及其在网络拓扑结构与算法中的应用
  • 批准号:
    60973150
  • 批准年份:
    2009
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目
拓扑学中的序代数结构及其在理论计算机科学中的应用
  • 批准号:
    10201023
  • 批准年份:
    2002
  • 资助金额:
    9.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
  • 批准号:
    2882485
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Computational Algebraic Topology with Applications in Precision Chemotherapy
计算代数拓扑及其在精准化疗中的应用
  • 批准号:
    553868-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Calculations of representation categories of quantum groups by linear skein theory and its applications to quantum topology
线性绞丝理论计算量子群表示范畴及其在量子拓扑中的应用
  • 批准号:
    19K14528
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Theory and applications of Stone-duality for quasi-Polish spaces
准波兰空间的石对偶性理论与应用
  • 批准号:
    18K11166
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Symplectic geometry and contact topology for manifolds with boundary and its applications
有边界流形的辛几何与接触拓扑及其应用
  • 批准号:
    17F17318
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了