EPSRC Project Summary: New Methods for Network Time Series Analysis

EPSRC 项目摘要:网络时间序列分析的新方法

基本信息

  • 批准号:
    2283002
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The rapidly increasing availability of multivariate time series data with explicit or implicit network structure have resulted in a heightened interest in network time series models for the purposes of forecasting or network structure inference. Such models have been used to forecast time series across a diverse array of research areas, from epidemiology to meteorology to social media networks. For example, the wind speed in a given area may depend on both past observations in the same location and those of its geographic neighbours, with varying lags and effect sizes. An accurate wind speed model may be a useful tool for deciding on the locations of new wind turbines, when it is not cost effective to collect the data at all candidate locations for long periods of time. The recently-developed generalised network autoregressive (GNAR) model provides both a flexible and highly parsimonious approach to the modelling of such data, by allowing dependence of the modelled series on an autoregressive component and neighbours across multiple covariate networks. My research aims to extend the GNAR modelling framework and develop new methods pertaining to network time series analysis in several areas. One extension would involve the development of novel algorithms for GNAR network structure inference in the absence of any network priors, allowing the treatment of all multivariate time series data sets as network time series. This would build on existing research for structural inference of Bayesian networks. Secondly, the GNAR model structure may be extended to incorporate node-specific exogenous time series regressors, which should lead to better forecasts and useful inferences when informative explanatory variables are available. Thirdly, my research will attempt to generalise network time series models to tensor-valued time series. For example, in the area of epidemiology, this would allow the parsimonious modelling of network time series where each location (or node in the network) possesses multiple time series representing case numbers, meteorological conditions and other factors relevant to disease transmission.Finally, I will examine the applications of deep learning to big network time series data sets, by using an initial network lifting preprocessing step to detrend and spatially decorrelate the data set. Of particular interest are extensions of `hybrid' deep learning architectures, such as the recently-developed Gaussian Process Long Short Term Memory (GP-LSTM) model. GP-LSTM uses a recurrent neural network to embed the kernel matrix of a Gaussian process and perform inference in a highly scalable fashion. As well as achieving state-of-the-art performance in time series forecasting tasks, the GP-LSTM allows for the straightforward estimation of the uncertainty in predictions of traditionally `opaque' neural networks. Furthermore, to my knowledge, the use of a network lifting scheme for feeding data into such deep learning models has not yet been examined in the machine learning literature.It is my hope that research in these areas will present novel contributions to the field of network time series analysis, that is to provide methodological tools to forecast multivariate time series using highly parsimonious models that exploit network structure. This project falls within the EPSRC Statistics and Applied Probability research area.________________________________________
具有明确或隐式网络结构的多元时间序列数据的迅速增加导致对网络时间序列模型的兴趣增加,以预测或网络结构推理。这些模型已用于预测各种研究领域的时间序列,从流行病学到气象学再到社交媒体网络。例如,给定区域中的风速可能取决于同一位置和其地理邻居的过去观察结果,其滞后和效应大小都有不同。准确的风速模型可能是确定新风力涡轮机位置的有用工具,而在长时间内收集所有候选位置的数据是不可成本效果的。最近开发的广义网络自回归(GNAR)模型通过允许对自回归组件的建模系列依赖于多个协变量网络的建模系列,从而为此类数据建模提供了一种灵活的和高度的方法。我的研究旨在扩展GNAR建模框架,并开发与几个领域网络时间序列分析有关的新方法。一个扩展将涉及在没有任何网络先验的情况下开发用于GNAR网络结构推断的新型算法,从而可以将所有多元时间序列数据集作为网络时间序列进行处理。这将基于贝叶斯网络结构推断的现有研究。其次,可以扩展GNAR模型结构以结合节点特异性的外源时间序列回归器,当提供信息的解释变量时,应带来更好的预测和有用的推论。第三,我的研究将尝试将网络时间序列模型推广到张量值时间序列。 For example, in the area of​​ epidemiology, this would allow the parsimonious modelling of network time series where each location (or node in the network) possesses multiple time series representing case numbers, meteorological conditions and other factors relevant to disease transmission.Finally, I will examine the applications of deep learning to big network time series data sets, by using an initial network lifting preprocessing step to detrend and spatially decorrelate the data set.特别有趣的是“混合”深度学习体系结构的扩展,例如最近开发的高斯过程长期记忆(GP-LSTM)模型。 GP-LSTM使用经常性的神经网络嵌入高斯过程的内核矩阵,并以高度可扩展的方式进行推断。除了实现时间序列预测任务的最新性能外,GP-LSTM还可以直接估计传统上“不透明”神经网络的预测中的不确定性。此外,据我所知,在机器学习文献中尚未对使用网络提升方案将数据馈入此类深度学习模型。我希望这些领域的研究能为网络时间序列分析的领域提供新的贡献,这是为了提供方法学工具,以预测使用高速播放网络结构的高速元素时间序列来预测多元素时间序列。该项目属于EPSRC统计数据和应用概率研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Metal nanoparticles entrapped in metal matrices.
  • DOI:
    10.1039/d1na00315a
  • 发表时间:
    2021-07-27
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
  • 通讯作者:
Ged?chtnis und Wissenserwerb [Memory and knowledge acquisition]
  • DOI:
    10.1007/978-3-662-55754-9_2
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A Holistic Evaluation of CO2 Equivalent Greenhouse Gas Emissions from Compost Reactors with Aeration and Calcium Superphosphate Addition
曝气和添加过磷酸钙的堆肥反应器二氧化碳当量温室气体排放的整体评估
  • DOI:
    10.3969/j.issn.1674-764x.2010.02.010
  • 发表时间:
    2010-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

利用星震学恒星作为定标源提高巡天项目中海量恒星的参数精度
  • 批准号:
    12373031
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
组态视角下数字化项目集群的复杂风险评估与治理研究
  • 批准号:
    72301154
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
国际应用系统分析研究学会2023暑期青年科学家项目
  • 批准号:
    72311540128
  • 批准年份:
    2023
  • 资助金额:
    4.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
碳规制/碳交易驱动下的大型复杂工程项目绿色调度优化研究
  • 批准号:
    72371195
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
亚洲—北美—非洲间断分布类群鼠刺属的时空分布格局及形成机制研究
  • 批准号:
    32360055
  • 批准年份:
    2023
  • 资助金额:
    32.00 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Admin-Core-001
管理核心-001
  • 批准号:
    10933141
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of a Longitudinal Observational Research Registry for the Study of Medicinal Cannabis Use and Health
开发药用大麻使用和健康研究的纵向观察研究登记册
  • 批准号:
    10741486
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
IUB C3A Pilot Project Core
IUB C3A 试点项目核心
  • 批准号:
    10713093
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
TO 1A Project Kick-Off Meeting
TO 1A项目启动会议
  • 批准号:
    10698760
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
TASK ORDER 1A: PROJECT KICK-OFF MEETING AND TASK ORDER 2A: CTSU CORE SUPPORT SERVICES & THE CTSU ENTERPRISE OF SYSTEMS; CANCER TRIALS SUPPORT UNIT (CT
任务订单 1A:项目启动会议和任务订单 2A:CTSU 核心支持服务
  • 批准号:
    10679729
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了