Stongly Coupled Field Theories, String Theory and Gravity

强耦合场论、弦理论和引力

基本信息

  • 批准号:
    ST/P000487/1
  • 负责人:
  • 金额:
    $ 2.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

This project is concerned with string theory and quantum field theory (QFT). There are two broad aims. Part I is to use tools inspired from string theory to describe otherwise intractable regimes of QFT. Part II is to use new geometric tools within string theory to describe aspects of gravity and our observable universe. QFT describes interactions at the sub-atomic level of our universe exceptionally well, underpinning all experimentally verified particles and interactions. The equations of QFT, except in special circumstances are unwieldy and not amenable to a direct analysis. The standard approach is to approximate the equations in a manner known as perturbation theory. This requires the interactions between particles be weak, not a universal situation. Often, the interactions are strong, a situation known as strong coupling, and the perturbation theory approximation breaks down. This problem is a major limitation for understanding many aspects of particle physics. Moreover, QFT does not describe macroscopic interactions, in particular gravity. If we are dealing with very dense objects such as black holes, then we need to find a theory that incorporates Einstein's theory of general relativity and QFT. The leading candidate that does this is string theory. In order to work, it requires stringent mathematical conditions be imposed. For example, in addition to the three dimensions we observe, there must exist six additional dimensions, whose geometry is very small and so not visible to present day experiment. A rough analogy is with a hose: from a distance it looks one-dimensional, but on closer inspection there is an additional circular direction. Describing the physics of the observable universe becomes a problem closely tied to the geometry of certain spaces, and conversely, demanding sensible physics as an output of string theory leads to new geometric techniques. One can then understand quantum corrections as coming from the string theory itself. String theory has led to new ideas in our understanding of QFT and gravity. We start with a strongly coupled QFT. Holography is an equivalence between two theories, let us call them theory A and theory B. Theory A is a d+1-dimensional gravity theory while theory B is QFT in flat (without gravity) d-dimensional space. Holography means that theory A can be utilised to learn about strong coupling aspects of theory B and vice versa. For example, theory B can be integrable, meaning it is completely soluble, and information about the strong coupling regime is determined purely by symmetry. Holography means we can determine (perhaps obscure) properties of theory A, the gravity theory. Conversely, via classical gravity, theory A can be used to describe regimes of strong coupling in theory B. Even if theory A nor theory B are not realistic models - one typically makes simplifying assumptions for the dualities to work -- one might hope the resulting features are universal, teaching us some new lessons on otherwise difficult problems in particle physics. Part I of this proposal is concerned with developing holography in a new paradigm of examples, as well as using integrability to explore properties of QFT. Next, in the context of gravity, new ideas have arisen in understanding black holes. Symmetries that derive from string theory, e.g. supersymmetry, have led to novel techniques for obtaining new types of black holes, as well as understanding their geometric and physical properties. Many interesting questions arise: what is the role of quantum corrections to these black hole solutions? Are they stable? A different but related question is how can we use string theory to describe quasi-realistic phenomenological models? Doing so requires understanding the geometry of spaces. What types of geometries lead to realistic models of our universe? What is the role of quantum corrections? These are the types of questions that form part II of this proposal.
该项目涉及弦理论和量子场论(QFT)。有两个广泛的目标。第一部分是使用受弦理论启发的工具来描述其他棘手的 QFT 机制。第二部分是使用弦理论中的新几何工具来描述重力和我们可观测宇宙的各个方面。 QFT 非常好地描述了宇宙亚原子层面的相互作用,为所有经过实验验证的粒子和相互作用提供了基础。除特殊情况外,QFT 方程都很笨重且不适合直接分析。标准方法是以微扰理论的方式近似方程。这要求粒子之间的相互作用很弱,不是普遍情况。通常,相互作用很强,这种情况称为强耦合,并且微扰理论近似会失效。这个问题是理解粒子物理学许多方面的主要限制。此外,QFT 不描述宏观相互作用,特别是重力。如果我们处理的是黑洞等非常致密的物体,那么我们需要找到一种结合爱因斯坦广义相对论和 QFT 的理论。做到这一点的主要候选者是弦理论。为了发挥作用,它需要施加严格的数学条件。例如,除了我们观察到的三个维度外,还必须存在六个附加维度,其几何形状非常小,因此在当今的实验中是不可见的。一个粗略的类比是软管:从远处看,它看起来是一维的,但仔细观察时,会发现有一个额外的圆形方向。描述可观测宇宙的物理现象成为一个与某些空间的几何学密切相关的问题,相反,要求敏感物理作为弦理论的输出会导致新的几何技术。然后,人们可以将量子校正理解为来自弦理论本身。弦理论为我们理解 QFT 和引力带来了新的想法。我们从强耦合 QFT 开始。全息术是两种理论的等价,我们称之为理论A和理论B。理论A是d+1维引力理论,而理论B是平坦(无引力)d维空间中的QFT。全息意味着理论 A 可用于了解理论 B 的强耦合方面,反之亦然。例如,理论 B 可以是可积的,这意味着它是完全可溶的,并且有关强耦合机制的信息纯粹由对称性决定。全息术意味着我们可以确定(也许是模糊的)理论 A(引力理论)的属性。相反,通过经典引力,理论 A 可以用来描述理论 B 中的强耦合状态。即使理论 A 和理论 B 都不是现实的模型——人们通常会为二元性的工作做出简化的假设——人们可能希望得到结果特征是普遍的,给我们一些关于粒子物理学中其他困难问题的新教训。该提案的第一部分涉及在新的示例范式中开发全息术,以及利用可积性来探索 QFT 的属性。接下来,在引力的背景下,出现了理解黑洞的新想法。来自弦理论的对称性,例如超对称性带来了获得新型黑洞以及理解它们的几何和物理特性的新技术。出现了许多有趣的问题:量子修正对这些黑洞解决方案的作用是什么?他们稳定吗?一个不同但相关的问题是我们如何使用弦理论来描述准现实现象学模型?这样做需要了解空间的几何形状。哪些类型的几何形状可以产生真实的宇宙模型?量子修正的作用是什么?这些是构成本提案第二部分的问题类型。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supersymmetric dS n solutions for n ? 5in D = 11 supergravity
n 的超对称 dS n 解?
  • DOI:
    http://dx.10.1088/1751-8121/ac8208
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Farotti D
  • 通讯作者:
    Farotti D
A note on the Hyper-CR equation, and gauged N= 2 supergravity
关于 Hyper-CR 方程的注释,以及测量的 N= 2 超重力
  • DOI:
    http://dx.10.1016/j.physletb.2018.02.074
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Dunajski M
  • 通讯作者:
    Dunajski M
Supersymmetric dS4 solutions in D = 11 supergravity
D = 11 超重力中的超对称 dS4 解
  • DOI:
    10.1007/jhep09(2022)214
  • 发表时间:
    2022-07-04
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    M. Di Gioia;J. Gutowski
  • 通讯作者:
    J. Gutowski
D = 11 dS 5 backgrounds with enhanced supersymmetry
D = 11 dS 5 具有增强超对称性的背景
  • DOI:
    http://dx.10.1088/1751-8121/ac9f31
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Farotti D
  • 通讯作者:
    Farotti D
Real supersymmetric solutions of (3,2) signature five-dimensional supergravity
(3,2)特征五维超引力的实超对称解
  • DOI:
    http://dx.10.1088/1361-6382/ad1542
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Farotti D
  • 通讯作者:
    Farotti D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jan Gutowski其他文献

Jan Gutowski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jan Gutowski', 18)}}的其他基金

Fundamental Implications of Fields, Strings and Gravity
场、弦和引力的基本含义
  • 批准号:
    ST/X000656/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.72万
  • 项目类别:
    Research Grant
Black Holes in Supergravity
超引力中的黑洞
  • 批准号:
    ST/I004874/2
  • 财政年份:
    2012
  • 资助金额:
    $ 2.72万
  • 项目类别:
    Fellowship
Black Holes in Supergravity
超引力中的黑洞
  • 批准号:
    ST/I004874/1
  • 财政年份:
    2011
  • 资助金额:
    $ 2.72万
  • 项目类别:
    Fellowship

相似国自然基金

考虑多相多介质耦合作用的地下水位变化场地非线性地震响应机理研究
  • 批准号:
    52378474
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
考虑断层-场地耦合效应的地铁地下车站结构抗震性能与韧性提升研究
  • 批准号:
    52378397
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
近断层城市区域盆山耦合场地三维地震动场宽频高效模拟方法及应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
污染场地原位纳米材料耦合微生物修复机理与技术
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    498 万元
  • 项目类别:
    国际(地区)合作与交流项目
液化侧扩流场地高桩码头桩-土-结构相互作用耦合机制与抗震设计方法研究
  • 批准号:
    51908484
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding Dike Propagation Through Comparison of High-fidelity Coupled Fracture and Fluid Flow Models and Field Observations
通过比较高保真耦合裂缝和流体流动模型以及现场观测来了解堤坝的扩展
  • 批准号:
    2333837
  • 财政年份:
    2024
  • 资助金额:
    $ 2.72万
  • 项目类别:
    Continuing Grant
Modeling, measurement and prediction of cardiac magneto-stimulation thresholds
心脏磁刺激阈值的建模、测量和预测
  • 批准号:
    10734438
  • 财政年份:
    2023
  • 资助金额:
    $ 2.72万
  • 项目类别:
Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
  • 批准号:
    10723802
  • 财政年份:
    2023
  • 资助金额:
    $ 2.72万
  • 项目类别:
HIGHLY SELECTIVE MACROBIOMOLECULAR ISOLATION, SOFT-LANDING AND CHARACTERIZATION USING STRUCTURES FOR LOSSLESS ION MANIPULATIONS
使用无损离子操作结构进行高选择性大生物分子分离、软着陆和表征
  • 批准号:
    10713577
  • 财政年份:
    2023
  • 资助金额:
    $ 2.72万
  • 项目类别:
Aging induced DNA double-strand break analysis in yeast
酵母中衰老诱导的 DNA 双链断裂分析
  • 批准号:
    10605475
  • 财政年份:
    2023
  • 资助金额:
    $ 2.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了