STFC Consolidated Grant for the Solar Physics Group at Northumbria University
STFC 为诺森比亚大学太阳物理小组提供综合拨款
基本信息
- 批准号:ST/T000384/1
- 负责人:
- 金额:$ 52.25万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Solar Physics Group at Northumbria University has a long-term research programme to understand the physics of our closest star, the Sun, and other solar-like stars. The Sun displays a number of fascinating and dynamic phenomena such as powerful solar flares and giant, planet-sized concentrations of magnetic fields (sunspots). It also provides a unique window that permits us to examine in detail how stars behave. The Sun is made of a plasma (ionised gas) threaded by a strong magnetic field. Such magnetised plasmas are common throughout the Universe (e.g. active galaxy nuclei, nebula, interstellar medium), hence our research also advances the understanding across multiple research communities. Furthermore, we are also keen to determine how the Sun influences the near-Earth environment. The Sun is the powerhouse of our solar system and its daily variability can have profound consequences for Earth. Space Weather is the name given to the impact of events (e.g. solar flares, coronal mass ejections) from the Sun on our technologically-advanced society. This impact is both beautiful (e.g. Northern lights) and potentially extremely detrimental (e.g. damaging satellites, increasing radiation that is harmful to aircrew and astronauts). Thus, in order to understand and address the risks associated with Space Weather, we need to understand its origins and drivers. Our work aims to address one of STFC's Science Challenges, namely "How do stars and planetary systems develop and how do they support the existence of life?", as well as key questions in the STFC Roadmap for Solar System Research, e.g. "What are the structures, dynamics and energetics of the Sun?" and "What are the fundamental processes at work in the Solar System?". This proposal focuses on different aspects of these current challenges and questions, with a natural synergy across the projects that contributes towards our long-term goal of a complete and detailed understanding of the Sun. Here, we are interested in discovering answers to problems such as: How do giant vortices (magnetic solar tornadoes) and magnetic waves lead to the heating of the outer envelope of the Sun's atmosphere to millions of degrees, and accelerate streams of charged particles away from the Sun (the solar wind) at speeds of a million miles per hour? How is energy stored and released in magnetic fields, leading to powerful solar flares that give off intense radiation (X-rays, gamma rays) and accelerate particles to relativistic speeds? How can we predict when solar flares occur and so improve our ability to forecast them? To address these fundamental, yet unanswered, questions, our research makes use of advanced mathematical techniques and cutting-edge computer simulations to create models of the Sun based on magnetohydrodynamics. We combine this theoretical effort with the highest-quality data of the Sun available from state-of-the-art solar instruments (e.g. NASA's Solar Dynamic Observatory; DKI Solar Telescope) incorporating information from across the electromagnetic spectrum (e.g. visible, EUV, X-ray) and analysing this with modern methods drawn from statistics and machine learning.
诺森比亚大学的太阳物理小组有一个长期研究计划,旨在了解距离我们最近的恒星、太阳和其他类太阳恒星的物理学。太阳呈现出许多迷人的动态现象,例如强大的太阳耀斑和行星大小的巨大磁场集中区(太阳黑子)。它还提供了一个独特的窗口,使我们能够详细检查恒星的行为方式。太阳由强磁场穿过的等离子体(电离气体)构成。这种磁化等离子体在整个宇宙中很常见(例如活跃的星系核、星云、星际介质),因此我们的研究也促进了多个研究团体的理解。 此外,我们还热衷于确定太阳如何影响近地环境。太阳是太阳系的动力源,它的日常变化会对地球产生深远的影响。太空天气是指太阳事件(例如太阳耀斑、日冕物质抛射)对我们技术先进的社会的影响。这种影响既美丽(例如北极光),又可能极其有害(例如损坏卫星、增加对机组人员和宇航员有害的辐射)。因此,为了了解和解决与空间天气相关的风险,我们需要了解其起源和驱动因素。 我们的工作旨在解决 STFC 的科学挑战之一,即“恒星和行星系统如何发展以及它们如何支持生命的存在?”,以及 STFC 太阳系研究路线图中的关键问题,例如。 “太阳的结构、动力学和能量是怎样的?”和“太阳系中起作用的基本过程是什么?”。该提案重点关注当前挑战和问题的不同方面,各个项目之间具有自然的协同作用,有助于实现我们全面详细了解太阳的长期目标。在这里,我们有兴趣找到以下问题的答案:巨大的涡旋(磁太阳龙卷风)和磁波如何导致太阳大气层的外层加热到数百万度,并加速带电粒子流远离太阳。太阳(太阳风)以每小时一百万英里的速度?磁场中如何储存和释放能量,从而导致强大的太阳耀斑,发出强烈的辐射(X射线、伽马射线)并将粒子加速到相对论速度?我们如何预测太阳耀斑何时发生并提高预测能力?为了解决这些基本但尚未解答的问题,我们的研究利用先进的数学技术和尖端的计算机模拟来创建基于磁流体动力学的太阳模型。我们将这一理论成果与最先进的太阳仪器(例如 NASA 的太阳动态观测站;DKI 太阳望远镜)提供的最高质量的太阳数据结合起来,整合了整个电磁频谱(例如可见光、EUV、X 射线)的信息。 -ray)并使用来自统计学和机器学习的现代方法进行分析。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Drivers of Active Region Outflows into the Slow Solar Wind
活动区流入慢速太阳风的驱动因素
- DOI:10.3847/1538-4357/ab8a4c
- 发表时间:2020-04-16
- 期刊:
- 影响因子:0
- 作者:D. Brooks;A. Winebarger;S. Savage;H. Warren;B. De Pontieu;H. Peter;J. Cirtain;L. Golub;Ken Kobayashi;S. McIntosh;D. McKenzie;R. Morton;L. Rachmeler;P. Testa;S. Tiwari;R. Walsh
- 通讯作者:R. Walsh
Novel data analysis techniques in coronal seismology
日冕地震学中的新型数据分析技术
- DOI:http://dx.10.48550/arxiv.2112.13577
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Anfinogentov S
- 通讯作者:Anfinogentov S
An overall view of temperature oscillations in the solar chromosphere with ALMA.
使用 ALMA 全面了解太阳色球层的温度振荡。
- DOI:http://dx.10.1098/rsta.2020.0174
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Jafarzadeh S
- 通讯作者:Jafarzadeh S
Magnetohydrodynamic Waves in Open Coronal Structures
开放冠状结构中的磁流体动力波
- DOI:10.1007/s11214-021-00849-0
- 发表时间:2020-12-16
- 期刊:
- 影响因子:10.3
- 作者:D. Banerjee;S. Prasad;V.;Pant;J. McLaughlin;P. Antolin;N. Magyar;L. Ofman;H. Tian;T.;Van Doorsselaere;I. Moortel;J. T.;Wang
- 通讯作者:Wang
Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). I. Coronal Heating
使用多缝太阳探测器 (MUSE) 探测太阳大气的物理特性。
- DOI:http://dx.10.3847/1538-4357/ac4222
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:De Pontieu B
- 通讯作者:De Pontieu B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James McLaughlin其他文献
Linear and nonlinear MHD mode coupling of the fast magnetoacoustic wave about a 3D magnetic null point
3D 磁零点附近快速磁声波的线性和非线性 MHD 模式耦合
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
J. Thurgood;James McLaughlin - 通讯作者:
James McLaughlin
Acute exercise and impaired glucose tolerance in obese humans.
肥胖人群的急性运动和糖耐量受损。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:4.4
- 作者:
C. McClean;A. McNeilly;T. Trinick;Marie H Murphy;E. Duly;James McLaughlin;J. McEneny;George Burke;Gareth W. Davison - 通讯作者:
Gareth W. Davison
Unobtrusive Sensing Solution for Post-stroke Rehabilitation
适用于中风后康复的低调传感解决方案
- DOI:
10.1007/978-3-030-25590-9_3 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Idongesit Ekerete;C. Nugent;Oonagh M. Giggins;James McLaughlin - 通讯作者:
James McLaughlin
Fusion of Unobtrusive Sensing Solutions for Home-Based Activity Recognition and Classification Using Data Mining Models and Methods
使用数据挖掘模型和方法融合用于家庭活动识别和分类的低调传感解决方案
- DOI:
10.3390/app11199096 - 发表时间:
2021-09-29 - 期刊:
- 影响因子:0
- 作者:
Idongesit Ekerete;M. Garcia;A. Konios;Mustafa A. Mustafa;Yohanca Diaz;Christopher Nugent;James McLaughlin - 通讯作者:
James McLaughlin
Using evolutionary computation to create vectorial Boolean functions with low differential uniformity and high nonlinearity
使用进化计算创建具有低微分均匀性和高非线性的矢量布尔函数
- DOI:
- 发表时间:
2013-01-29 - 期刊:
- 影响因子:0
- 作者:
James McLaughlin;John A. Clark - 通讯作者:
John A. Clark
James McLaughlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James McLaughlin', 18)}}的其他基金
DynaSun - Dynamics Of The Solar Corona In The Era Of Data Intensive Observations
DynaSun - 数据密集观测时代的日冕动力学
- 批准号:
EP/Y037464/1 - 财政年份:2024
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
STFC Consolidated Grant for the Solar and Space Physics Group at Northumbria University
STFC 为诺森比亚大学太阳和空间物理小组提供综合拨款
- 批准号:
ST/X001008/1 - 财政年份:2023
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
SAFEWATER Devices Translation and Implementation (SAFEWATER Translate)
SAFEWATER 设备翻译和实施 (SAFEWATER Translate)
- 批准号:
EP/T015470/1 - 财政年份:2019
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
相似国自然基金
激光/超声双引导磁调控微纳机器人联合低强度超声靶向增强溶栓药物渗透研究
- 批准号:82302215
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高压电脉冲-机械联合破岩机理及力学性状研究
- 批准号:42377171
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
鼠李糖乳杆菌1.0320联合菊粉调节肠道微生态重塑肠道屏障功能的分子机制研究
- 批准号:32372343
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于生理机制和群体模型引导重症肺部感染患者静脉联合雾化吸入多粘菌素B的精准用药研究
- 批准号:82373966
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
联合连续弛豫时间分布与物理阻抗模型的锂离子电池极化特性演变分析方法
- 批准号:22309205
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
STFC Consolidated Grant for the Solar and Space Physics Group at Northumbria University
STFC 为诺森比亚大学太阳和空间物理小组提供综合拨款
- 批准号:
ST/X001008/1 - 财政年份:2023
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
An STFC Consolidated grant application to support solar and space science at the University of Sheffield
STFC 综合赠款申请,用于支持谢菲尔德大学的太阳能和空间科学
- 批准号:
ST/V000977/1 - 财政年份:2021
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
STFC Consolidated Grant transfer and extension
STFC 综合补助金转移和延期
- 批准号:
ST/V006320/1 - 财政年份:2020
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
STFC Experimental Particle Physics 2018 Consolidated Grant
STFC实验粒子物理2018年综合资助
- 批准号:
ST/S000798/1 - 财政年份:2019
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant
Application to STFC for Consolidated Grant Support for the Solar Physics and Space Plasma Research Centre (SP2RC) at The University of Sheffield
向 STFC 申请对谢菲尔德大学太阳物理和空间等离子体研究中心 (SP2RC) 的综合拨款支持
- 批准号:
ST/R000697/1 - 财政年份:2018
- 资助金额:
$ 52.25万 - 项目类别:
Research Grant