Fast timing silicon pixel detectors for new applications

适用于新应用的快速定时硅像素探测器

基本信息

  • 批准号:
    ST/T002751/1
  • 负责人:
  • 金额:
    $ 14.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Silicon sensors are essential in a range of fields, from cutting-edge research (e.g. particle physics, chemistry, materials science) to industry (agriculture, manufacturing), and everyday devices (cameras, security). They are the eyes of our electronic world. As we develop more precise sensors, for example cameras with smaller pixels, the potential reach of these devices increases, allowing more processes to be investigated, and with more detail.Currently the resolution of such sensors is at the micrometre level. However, the time precision is relatively much worse, due to significant technological challenges in assigning times to the signals in the silicon. The best precision for small-pixel silicon sensors is at the nanosecond (ns) level. By comparison, light travels 300,000 micrometre per ns. Our ability to observe many processes is significantly hampered by limitations in time precision.For fast (~1ns duration) processes, adding picosecond-level (1ps = 0.001ns) timing to micrometre-level spatial measurements effectively corresponds to the difference between still images and video, and hence has the potential to open up entire new fields of research. Such processes occur, for example, in particle and nuclear physics, chemistry, and materials science. The ultimate aim of this project is to develop sensors that for the first time simultaneously reach precision at the micrometre-level in space, and picosecond-level in time: a high-speed video camera for the smallest observable scales.We start from a new type of sensor only developed in the past decade: Low Gain Avalanche Detectors (LGAD). By adding specially-treated semiconductor layers to the silicon, the time of signal collection is significantly reduced, making it possible to reach ~30ps precision. However, the only devices so far developed have large (mm-size) pads rather than pixels. Our programme of research will focus on ways to transform these devices into pixel sensors, by considering new geometries and doping approaches, and thin sensors. The key is to maintain as uniform an electric field as possible within the pixel, to ensure fast signal development. We have started preliminary studies, including fabrication of prototype devices, and now we are ready to push forward with an aggressive research and development phase.Researchers from the Universities of Glasgow and Manchester will work with a commercial semiconductor manufacturer (Micron) to design and fabricate a range of new LGAD sensors, and analyse their performance using several high-tech methods ('transient current technique' - TCT and 'two photon absorption' - TPA). In parallel, we will develop realistic simulations of the detectors using TCAD models, to predict the sensor characteristics under different designs. These simulations will be validated using the TCT and TPA results from our measurements. All of our results will be published in open-access journals, taking us a step closer to the dream of '4D' precision sensors.In parallel, we will develop a network of potential beneficiaries of these new devices, in particular for the fields of materials science and proton therapy. We have already established connections with representatives within these areas, who will help us to build the network, starting with two dedicated workshops. These will be used to build a specifications document where the required technology performances are defined. They will also enable us to reach further to identify more potential users of this new technology, in the UK and beyond.
从尖端研究(例如粒子物理,化学,材料科学)到工业(农业,制造业)和日常设备(相机,安全性),硅传感器在一系列领域至关重要。它们是我们电子世界的眼睛。随着我们开发更精确的传感器,例如具有较小像素的摄像机,这些设备的潜在范围会增加,从而可以进行更多的过程,并进行更多的细节。目前,此类传感器的分辨率在微米水平上。但是,由于将时间分配给硅中的信号时,时间精度相对较差,这是相对较差的。天金硅传感器的最佳精度是在纳秒(NS)水平上。相比之下,光线每NS传播300,000微米。我们观察许多过程的能力受到时间精度的局限性的限制。对于快速(〜1NS持续时间)过程,将Picsecond级别(1PS = 0.001NS)的时间添加到微米级的空间测量中,有效地对应于静止图像和视频之间的差异,因此可以打开整个研究的潜力。例如,在粒子和核物理,化学和材料科学中发生这种过程。该项目的最终目的是开发传感器,该传感器首次同时达到空间微米级别的精确度,而Picsecond级别的时间:一种用于最小可观察到的尺度的高速摄像机。我们从过去十年中开发的新型传感器开始:低增益Avalanche检测器(LGALCHANCHE(LGAD)。通过将特殊处理的半导体层添加到硅中,信号收集时间大大减少,从而可以达到约30ps的精度。但是,迄今为止唯一开发的设备具有较大的(MM大小)垫,而不是像素。我们的研究计划将集中于通过考虑新的几何形状和掺杂方法以及薄传感器来将这些设备转换为像素传感器的方法。关键是要在像素内保持尽可能统一的电场,以确保快速信号的发展。 We have started preliminary studies, including fabrication of prototype devices, and now we are ready to push forward with an aggressive research and development phase.Researchers from the Universities of Glasgow and Manchester will work with a commercial semiconductor manufacturer (Micron) to design and fabricate a range of new LGAD sensors, and analyse their performance using several high-tech methods ('transient current technique' - TCT and 'two photon absorption' - TPA)。同时,我们将使用TCAD模型对检测器进行逼真的模拟,以预测不同设计下的传感器特性。这些模拟将使用我们的测量结果验证TCT和TPA结果。我们的所有结果将在开放式期刊上发表,使我们更接近“ 4D”精确传感器的梦想。在同时,我们将开发这些新设备的潜在受益人网络,尤其是在材料科学和质子治疗领域。我们已经与这些领域内的代表建立了联系,他们将帮助我们建立网络,从两个专门的研讨会开始。这些将用于构建定义所需技术性能的规格文档。他们还将使我们能够进一步确定英国及以后的这项新技术的更多潜在用户。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marco Gersabeck其他文献

Marco Gersabeck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marco Gersabeck', 18)}}的其他基金

LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
  • 批准号:
    ST/X006468/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Research Grant
SWIFT-HEP 1.5
SWIFT-HEP 1.5
  • 批准号:
    ST/Y005562/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Research Grant
LHCb Upgrade 2 bridging Oct 2023 - March 2024
LHCb 升级 2 桥接 2023 年 10 月 - 2024 年 3 月
  • 批准号:
    ST/Y005457/1
  • 财政年份:
    2023
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Research Grant
LHCb Upgrade II: Maximising HL-LHC Discovery Potential
LHCb 升级 II:最大化 HL-LHC 发现潜力
  • 批准号:
    ST/V003410/1
  • 财政年份:
    2021
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Research Grant
SoftWare InFrastructure and Technology for High Energy Physics experiments (SWIFT-HEP) at the University of Manchester
曼彻斯特大学高能物理实验软件基础设施和技术 (SWIFT-HEP)
  • 批准号:
    ST/V002546/1
  • 财政年份:
    2021
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Research Grant
LHCb Upgrade Cost to Completion
LHCb 升级完成成本
  • 批准号:
    ST/W001624/1
  • 财政年份:
    2021
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Research Grant
LHCb Upgrade II: Maximising HL-LHC Discovery Potential (Bridging Funding)
LHCb 升级 II:最大化 HL-LHC 发现潜力(过渡资金)
  • 批准号:
    ST/V002902/1
  • 财政年份:
    2020
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Research Grant
SoftWare InFrastructure and Technology for High Energy Physics experiments (2020) at the University of Manchester
曼彻斯特大学高能物理实验软件基础设施和技术 (2020)
  • 批准号:
    ST/V005995/1
  • 财政年份:
    2020
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Research Grant
Science Hands - Exploring antimatter with audible pendulums for school kids
科学之手 - 为小学生提供可听摆锤探索反物质
  • 批准号:
    ST/N001990/1
  • 财政年份:
    2015
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Research Grant
Discovery of Matter Anti-matter Asymmetry in the Charm Sector
魅力领域物质反物质不对称性的发现
  • 批准号:
    ST/K003410/1
  • 财政年份:
    2013
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Research Grant

相似国自然基金

基于指定时间包含控制的风-光-储系统频率、电压一体化控制方案研究
  • 批准号:
    52377074
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于事件触发的固定时间分布式优化算法研究及应用
  • 批准号:
    12301652
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
执行器饱和约束下网络化机器人系统的预定时间编队控制
  • 批准号:
    62303430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非理想通信下多智能体分布式预定时间约束优化算法研究
  • 批准号:
    62303206
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于渔场不确定时空分布的远洋捕捞路线优化研究
  • 批准号:
    72301225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fast timing detectors for the innermost layer of the future collider experiments
用于未来对撞机实验最内层的快速定时探测器
  • 批准号:
    23K19055
  • 财政年份:
    2023
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Closed-loop control of dentate inhibitory timing in healthy and epileptic mice
健康小鼠和癫痫小鼠齿状抑制时间的闭环控制
  • 批准号:
    10395865
  • 财政年份:
    2020
  • 资助金额:
    $ 14.36万
  • 项目类别:
Closed-loop control of dentate inhibitory timing in healthy and epileptic mice
健康小鼠和癫痫小鼠齿状抑制时间的闭环控制
  • 批准号:
    10316977
  • 财政年份:
    2020
  • 资助金额:
    $ 14.36万
  • 项目类别:
Closed-Loop Control of Dentate Inhibitory Timing in Healthy and Epileptic Mice
健康小鼠和癫痫小鼠齿状抑制时间的闭环控制
  • 批准号:
    10397164
  • 财政年份:
    2020
  • 资助金额:
    $ 14.36万
  • 项目类别:
Potential of Cerenkov Radiation for Fast Timing of TlBr Semiconductor Detectors for PET
切伦科夫辐射在 PET 中 TlBr 半导体探测器快速计时方面的潜力
  • 批准号:
    9437477
  • 财政年份:
    2017
  • 资助金额:
    $ 14.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了