MICRO-INTERACT - Laser capture micro-dissection for identification of novel interactions within the plankton that underpin marine carbon cycling
微交互 - 激光捕获微解剖,用于识别支撑海洋碳循环的浮游生物内的新型相互作用
基本信息
- 批准号:NE/T009195/1
- 负责人:
- 金额:$ 37.35万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Interactions between marine organisms drive the transfer of carbon between trophic groups and ultimately determine the fate of carbon fixed by photosynthetic organisms. There is mounting evidence for a diverse array of interactions within the plankton that remain poorly characterised. For example, phytoplankton may become infected by pathogens (viruses and bacteria) or parasites (e.g. fungi), although our understanding of the extent and diversity of these interactions remains limited. Polysaccharides exuded by phytoplankton contribute to a large pool of labile carbon in the oceans, but the micro-organisms that recycle this carbon are also poorly characterised. Trophic interactions in the plankton are also difficult to assess without improved methodologies to assess gut contents or food vacuoles from predatory organisms.There is a clear need to study these diverse interactions in greater detail to improve our understanding of marine ecosystem function. However, transient interactions are often difficult to track and may be overlooked by techniques that assess bulk seawater. Direct microscopic observations of planktonic organisms is required to identify novel interactions between marine organisms, such as parasites and trophic interactions. However, to identify and study these organisms requires technically challenging and laborious picking of single cells or highly skilled tissue dissection. Fluorescence-activated cell sorting (FACS) do not allow visualisation of target cells and therefore cannot be easily linked to in situ observations and cannot be used to isolate novel species or interacting cells in a targeted manner (e.g. less abundant species or infected cells within a population) unless these cell types can be clearly discriminated from all of the other cells by their fluorescent properties.Improved technologies are therefore required to identify the many poorly characterised interactions within the plankton in a high throughput manner. We propose to use laser capture microdissection (LCM) for this purpose. LCM involves attaching microscopy samples to a membrane and isolating single cells and/or tissue by using a laser to cut the membrane around the cells of interest and then transfer them to a collecting vessel. The huge advantage of this approach is that it allows observed cells and tissue to be directly isolated in a simple and high-throughput manner. Harvested cells or tissue can then be further characterised by genomics, proteomics or metabolite profiling approaches. Live cells may be also isolated, free from contamination, for subsequent culturing and generation of novel cell lines.While LCM has been employed primarily in biomedical applications, the technique offers huge potential for environmental research. LCM has recently been used to isolate specific cell types from a brown seaweed (Ectocarpus) for gene expression studies, to isolate unicellular algae (e.g. Euglena and Chlamydomonas) for metabolite profiling, and to isolate the gut contents of fish larvae for subsequent molecular characterisation.The application of LCM to the plankton populations will provide a step-change in our ability to characterise key processes that underpin marine ecosystems. As examples, we aim to improve understanding of parasitism within the plankton and to identify novel parasites. We will also investigate the micro-organisms that degrade organic carbon in the oceans, by isolating individual transparent exopolymeric particles (TEP) for characterisation of their associated microbiomes. LCM will also be used to isolate previously uncultured phytoplankton species.LCM offers great flexibility for multiple users and will greatly speed up processes that have previously required laborious and highly skilled techniques.
海洋生物之间的相互作用驱动营养组之间的碳转移,并最终决定光合生物固定碳的命运。越来越多的证据表明,浮游生物内部存在多种相互作用,但目前尚不清楚。例如,浮游植物可能会被病原体(病毒和细菌)或寄生虫(例如真菌)感染,尽管我们对这些相互作用的程度和多样性的了解仍然有限。浮游植物分泌的多糖在海洋中形成了大量的不稳定碳,但回收这些碳的微生物的特征也很少。如果没有改进的方法来评估捕食性生物的肠道内容物或食物液泡,浮游生物中的营养相互作用也很难评估。显然需要更详细地研究这些不同的相互作用,以提高我们对海洋生态系统功能的理解。然而,瞬态相互作用通常难以追踪,并且可能被评估大量海水的技术所忽视。需要对浮游生物进行直接显微镜观察,以确定海洋生物之间的新相互作用,例如寄生虫和营养相互作用。然而,要识别和研究这些生物体,需要技术上具有挑战性且费力的单细胞挑选或高技能的组织解剖。荧光激活细胞分选 (FACS) 不允许靶细胞可视化,因此不能轻易与原位观察联系起来,并且不能用于以有针对性的方式分离新物种或相互作用的细胞(例如,数量较少的物种或受感染的细胞)群体),除非这些细胞类型可以通过其荧光特性与所有其他细胞清楚地区分开来。因此,需要改进的技术来以高通量方式识别浮游生物内许多特征不明确的相互作用。为此,我们建议使用激光捕获显微切割(LCM)。 LCM 涉及将显微镜样品附着到膜上,并通过使用激光切割感兴趣细胞周围的膜来分离单个细胞和/或组织,然后将它们转移到收集容器中。这种方法的巨大优点是它允许以简单且高通量的方式直接分离观察到的细胞和组织。然后可以通过基因组学、蛋白质组学或代谢物分析方法进一步表征收获的细胞或组织。活细胞也可以被分离出来,不受污染,用于随后的培养和新型细胞系的生成。虽然 LCM 主要用于生物医学应用,但该技术为环境研究提供了巨大的潜力。 LCM 最近被用于从褐海藻(Ectocarpus)中分离特定细胞类型以进行基因表达研究,分离单细胞藻类(例如裸藻和衣藻)以进行代谢物分析,并分离鱼幼虫的肠道内容物以进行后续分子表征。 LCM 在浮游生物种群中的应用将使我们表征支撑海洋生态系统的关键过程的能力发生重大变化。作为例子,我们的目标是提高对浮游生物内寄生性的理解并识别新的寄生虫。我们还将通过分离单个透明外聚合物颗粒(TEP)来研究降解海洋中有机碳的微生物,以表征其相关微生物组。 LCM 还将用于分离以前未培养的浮游植物物种。LCM 为多个用户提供了极大的灵活性,并将大大加快以前需要费力和高技能技术的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glen Wheeler其他文献
Representation formulae for higher order curvature flows
高阶曲率流的表示公式
- DOI:
10.1016/j.jde.2022.10.011 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:2.4
- 作者:
James A. McCoy;Philip Schrader;Glen Wheeler - 通讯作者:
Glen Wheeler
On the H 1 ( ds (cid:2) ) -Gradient Flow for the Length Functional
关于 H 1 ( ds (cid:2) ) - 长度泛函的梯度流
- DOI:
10.1007/s40042-022-00656-y - 发表时间:
2023 - 期刊:
- 影响因子:0.6
- 作者:
Philip Schrader;Glen Wheeler;V. Wheeler - 通讯作者:
V. Wheeler
A Sobolev gradient flow for the area-normalised Dirichlet energy of $H^1$ maps
$H^1$ 地图面积归一化狄利克雷能量的 Sobolev 梯度流
- DOI:
- 发表时间:
2023-10-09 - 期刊:
- 影响因子:0
- 作者:
Shinya Okabe;Philip Schrader;V. Wheeler;Glen Wheeler - 通讯作者:
Glen Wheeler
Convergence for global curve diffusion flows
全局曲线扩散流的收敛
- DOI:
10.3934/mine.2022001 - 发表时间:
2020-04-18 - 期刊:
- 影响因子:1
- 作者:
Glen Wheeler - 通讯作者:
Glen Wheeler
On the curve diffusion flow of closed plane curves
闭合平面曲线的曲线扩散流
- DOI:
10.1007/s10231-012-0253-2 - 发表时间:
2012-01-18 - 期刊:
- 影响因子:1
- 作者:
Glen Wheeler - 通讯作者:
Glen Wheeler
Glen Wheeler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glen Wheeler', 18)}}的其他基金
NSFGEO-NERC: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
- 批准号:
NE/V013343/1 - 财政年份:2021
- 资助金额:
$ 37.35万 - 项目类别:
Research Grant
Assessing how cell size constrains carbon uptake in diatoms using direct measurements of cell surface carbonate chemistry
通过直接测量细胞表面碳酸盐化学来评估细胞大小如何限制硅藻的碳吸收
- 批准号:
NE/T000848/1 - 财政年份:2020
- 资助金额:
$ 37.35万 - 项目类别:
Research Grant
NSFGEO-NERC An unexpected requirement for silicon in coccolithophore calcification: ecological and evolutionary implications.
NSFGEO-NERC 颗石藻钙化过程中对硅的意外需求:生态和进化影响。
- 批准号:
NE/N011708/1 - 财政年份:2016
- 资助金额:
$ 37.35万 - 项目类别:
Research Grant
The role of ciliary Ca2+ signalling in the regulation of intraflagellar transport
纤毛 Ca2 信号传导在鞭毛内运输调节中的作用
- 批准号:
BB/M02508X/1 - 财政年份:2015
- 资助金额:
$ 37.35万 - 项目类别:
Research Grant
H+ fluxes in phytoplankton - a mechanistic and modelling study of their physiological roles and impact upon community responses to ocean acidification
浮游植物中的 H 通量 - 其生理作用及其对海洋酸化群落反应影响的机制和模型研究
- 批准号:
NE/J021296/1 - 财政年份:2012
- 资助金额:
$ 37.35万 - 项目类别:
Research Grant
相似国自然基金
夜间NO3自由基反应活性与臭氧污染之间相互影响机制研究
- 批准号:22376030
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
长江经济带新型城镇化与水生态韧性的相互影响及耦合协调关系
- 批准号:72363022
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
粘附蛋白结合与膜脂动态重排之间的相互影响研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于数据点相互影响的多阶密度聚类算法及其在大气污染时空数据中的应用研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
滨水植被群落生长扩张与河床演变的相互影响研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
LTREB: How does inter-annual variation in rainfall interact with soil fertility and chronic disruption of soil moisture dynamics to alter soil C cycling in tropical forests?
LTREB:降雨量的年际变化如何与土壤肥力和土壤湿度动态的长期破坏相互作用,从而改变热带森林的土壤碳循环?
- 批准号:
2332006 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332661 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332662 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Standard Grant
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
- 批准号:
DP240102605 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Discovery Projects
SCC-PG: Towards A User-Centered and Equity-Aware Micromobility Sharing Co-Design Network to Interact with A Distressed Municipality
SCC-PG:建立一个以用户为中心、具有公平意识的微交通共享协同设计网络,与陷入困境的城市进行互动
- 批准号:
2303575 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
Standard Grant