Assessing how cell size constrains carbon uptake in diatoms using direct measurements of cell surface carbonate chemistry

通过直接测量细胞表面碳酸盐化学来评估细胞大小如何限制硅藻的碳吸收

基本信息

项目摘要

The diatoms are a group of unicellular algae that represent some of the most important photosynthetic organisms on our planet. Diatoms are particularly abundant in nutrient rich coastal regions where they form the base of the food web, supporting fishing and seafood industries. It is estimated that diatoms contribute up to 20 % of global photosynthesis. It is therefore surprising that there are major uncertainties relating to the form of carbon taken up by diatoms and how these mechanisms are influenced by the size of the cell.Diatoms range from very small to very large (5-200 micrometre diameter) and can even form colonies, in the form of chains of cells linked together. This huge diversity in size has a major influence on the ability of each species to acquire nutrients from its environment, with the supply to larger species potentially limited by their diffusive boundary layer. Understanding how cell size constrains nutrient acquisition is therefore central to our understanding of diatom ecology and the distribution of different species, although direct measurements of the diffusive boundary layer around cells are lacking.Although seawater contains a plentiful supply of dissolved inorganic carbon, only a small proportion of this is present as carbon dioxide (CO2). The supply of CO2 to the cell by diffusion is therefore not sufficient to support the high rates of photosynthesis observed in diatoms. This problem is much greater in large species, due to the significant diffusive boundary layer around the cell surface. Diatoms, and other marine phytoplankton, therefore have to utilise the pool of bicarbonate (HCO3-), either by actively transporting it across the membrane or by using an enzyme (extracellular carbonic anhydrase) to catalyse its conversion to CO2, which can then diffuse across the membrane. However, it is technically difficult to measure the proportion of carbon taken up by these different mechanisms and different diatom species show considerable variability. Moreover, the role of the enzyme extracellular carbonic anhydrase has been much disputed. Because of this uncertainty, we do not have a mechanistic understanding of how changes in CO2 supply can influence the composition of diatom communities. With the concentration of CO2 in seawater predicted to change dramatically in the coming centuries, this uncertainty hampers our ability to predict how different species may respond to the changing availability of CO2. Improved knowledge of the microenvironment around diatom cells is necessary if we are to understand how they acquire carbon from seawater. We have developed tiny ion-selective microelectrodes that can be placed at the surface of a single diatom cell. By measuring pH and carbonate (CO32-), we can calculate fluxes of carbon across the membrane and estimate to what extent the supply of CO2 to the cell surface may be limiting.This project will use these new techniques to address some of the major questions relating to carbon acquisition by diatoms. We wish to examine the extent to which CO2 supply is limiting to cells of different sizes and examine how mechanisms of carbon uptake are adjusted to cope with changes in carbon supply (e.g. elevated CO2) or carbon demand (e.g. a greater rate of carbon fixation is needed at high light). We will also examine whether the supply of CO2 influences the ability of certain species to form chains, in order to understand the environments where we might expect these species to be successful. These studies using microelectrodes will be complemented by a molecular genetic approach to study to the role of the enzyme, extracellular carbonic anhydrase, which appears to play a critical role in the supply of CO2 to some diatoms. Finally, we will also examine natural populations of diatoms to see how they are influenced by changes in the availability of carbon dioxide throughout the progression of a typical diatom bloom.
硅藻是一组单细胞藻类,代表了我们星球上一些最重要的光合生物。硅藻在营养丰富的沿海地区尤其丰富,它们构成了食物网的基础,支持渔业和海鲜业。据估计,硅藻对全球光合作用的贡献高达20%。因此,令人惊讶的是,关于硅藻吸收碳的形式以及这些机制如何受细胞大小的影响,存在很大的不确定性。硅藻的范围从非常小到非常大(直径 5-200 微米),甚至可以形成集落,以细胞链的形式连接在一起。这种巨大的体型差异对每个物种从环境中获取养分的能力产生重大影响,而较大物种的供应可能受到其扩散边界层的限制。因此,了解细胞大小如何限制养分获取对于我们了解硅藻生态和不同物种的分布至关重要,尽管缺乏对细胞周围扩散边界层的直接测量。尽管海水中含有大量溶解的无机碳,但只有少量其中一部分以二氧化碳 (CO2) 的形式存在。因此,通过扩散向细胞供应二氧化碳不足以支持在硅藻中观察到的高光合作用速率。由于细胞表面周围存在显着的扩散边界层,这个问题在大型物种中更为严重。因此,硅藻和其他海洋浮游植物必须利用碳酸氢盐 (HCO3-) 库,要么主动将其转运穿过膜,要么使用酶(细胞外碳酸酐酶)催化其转化为 CO2,然后二氧化碳可以扩散到整个细胞膜。膜。然而,测量这些不同机制所吸收的碳的比例在技术上是困难的,并且不同的硅藻种类表现出相当大的差异。此外,细胞外碳酸酐酶的作用一直存在很大争议。由于这种不确定性,我们无法从机制上理解二氧化碳供应的变化如何影响硅藻群落的组成。由于海水中二氧化碳的浓度预计在未来几个世纪内将发生巨大变化,这种不确定性阻碍了我们预测不同物种如何应对二氧化碳变化的能力。如果我们要了解硅藻细胞如何从海水中获取碳,就必须提高对硅藻细胞周围微环境的了解。我们开发了微型离子选择性微电极,可以放置在单个硅藻细胞的表面。通过测量 pH 值和碳酸盐 (CO32-),我们可以计算跨膜的碳通量,并估计细胞表面的 CO2 供应可能受到限制的程度。该项目将使用这些新技术来解决一些主要问题与硅藻获取碳有关。我们希望研究二氧化碳供应对不同大小的细胞的限制程度,并研究如何调整碳吸收机制以应对碳供应(例如二氧化碳增加)或碳需求(例如更高的碳固定率)的变化。高光下需要)。我们还将研究二氧化碳的供应是否会影响某些物种形成链的能力,以便了解我们期望这些物种成功的环境。这些使用微电极的研究将得到分子遗传学方法的补充,以研究细胞外碳酸酐酶的作用,该酶似乎在向某些硅藻供应二氧化碳方面发挥着关键作用。最后,我们还将研究硅藻的自然种群,以了解在典型硅藻华的整个过程中二氧化碳的可用性变化如何影响它们。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The requirement for external carbonic anhydrase in diatoms is influenced by the supply and demand for dissolved inorganic carbon
硅藻对外部碳酸酐酶的需求受到溶解无机碳供需的影响
  • DOI:
    http://dx.10.1111/jpy.13416
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Keys M
  • 通讯作者:
    Keys M
Regulation and integration of membrane transport in marine diatoms.
海洋硅藻膜运输的调节和整合。
Gephyrocapsa huxleyi ( Emiliania huxleyi ) as a model system for coccolithophore biology
Gephyrocapsa huxleyi (Emiliania huxleyi)作为颗石藻生物学的模型系统
  • DOI:
    http://dx.10.1111/jpy.13404
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Wheeler G
  • 通讯作者:
    Wheeler G
Spatiotemporal Cytosolic Ca 2+ Signals in Plants and Algae: Divergent Means to an End
植物和藻类中的时空胞质 Ca 2 信号:达到目的的不同手段
  • DOI:
    http://dx.10.1089/bioe.2023.0004
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Brownlee C
  • 通讯作者:
    Brownlee C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Glen Wheeler其他文献

Representation formulae for higher order curvature flows
高阶曲率流的表示公式
  • DOI:
    10.1016/j.jde.2022.10.011
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    James A. McCoy;Philip Schrader;Glen Wheeler
  • 通讯作者:
    Glen Wheeler
On the H 1 ( ds (cid:2) ) -Gradient Flow for the Length Functional
关于 H 1 ( ds (cid:2) ) - 长度泛函的梯度流
A Sobolev gradient flow for the area-normalised Dirichlet energy of $H^1$ maps
$H^1$ 地图面积归一化狄利克雷能量的 Sobolev 梯度流
  • DOI:
  • 发表时间:
    2023-10-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shinya Okabe;Philip Schrader;V. Wheeler;Glen Wheeler
  • 通讯作者:
    Glen Wheeler
Convergence for global curve diffusion flows
全局曲线扩散流的收敛
  • DOI:
    10.3934/mine.2022001
  • 发表时间:
    2020-04-18
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Glen Wheeler
  • 通讯作者:
    Glen Wheeler
On the curve diffusion flow of closed plane curves
闭合平面曲线的曲线扩散流

Glen Wheeler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Glen Wheeler', 18)}}的其他基金

NSFGEO-NERC: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
  • 批准号:
    NE/V013343/1
  • 财政年份:
    2021
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Research Grant
MICRO-INTERACT - Laser capture micro-dissection for identification of novel interactions within the plankton that underpin marine carbon cycling
微交互 - 激光捕获微解剖,用于识别支撑海洋碳循环的浮游生物内的新型相互作用
  • 批准号:
    NE/T009195/1
  • 财政年份:
    2019
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Research Grant
NSFGEO-NERC An unexpected requirement for silicon in coccolithophore calcification: ecological and evolutionary implications.
NSFGEO-NERC 颗石藻钙化过程中对硅的意外需求:生态和进化影响。
  • 批准号:
    NE/N011708/1
  • 财政年份:
    2016
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Research Grant
The role of ciliary Ca2+ signalling in the regulation of intraflagellar transport
纤毛 Ca2 信号传导在鞭毛内运输调节中的作用
  • 批准号:
    BB/M02508X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Research Grant
H+ fluxes in phytoplankton - a mechanistic and modelling study of their physiological roles and impact upon community responses to ocean acidification
浮游植物中的 H 通量 - 其生理作用及其对海洋酸化群落反应影响的机制和模型研究
  • 批准号:
    NE/J021296/1
  • 财政年份:
    2012
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Research Grant

相似国自然基金

机械力传导的分子机制—细胞感知力与诱导基因表达的方式如何?
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
基于单细胞测序技术在EGFR-L858R肺癌模型中探究如何提高“冷”肿瘤对免疫治疗的响应
  • 批准号:
    81972680
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
RBM46介导的转录后调控如何通过调节能量代谢参与胚胎干细胞的干性维持
  • 批准号:
    31801219
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
小RNA如何调控互为反义的CDK4/TSPAN31和CCND1/LOC15基因的表达及肝癌细胞的增殖与凋亡
  • 批准号:
    81372466
  • 批准年份:
    2013
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
心脏是如何开始跳动的-早期胚心收缩和兴奋发生机制
  • 批准号:
    30400153
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
  • 批准号:
    10750765
  • 财政年份:
    2024
  • 资助金额:
    $ 70.9万
  • 项目类别:
Organelle teamwork: understanding how peroxisomes and mitochondria communicate in neuronal cell function
细胞器团队合作:了解过氧化物酶体和线粒体在神经细胞功能中如何沟通
  • 批准号:
    BB/Z514767/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Fellowship
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Continuing Grant
Defining how cells relay mechanical signals to changes in cell architecture
定义细胞如何将机械信号传递给细胞结构的变化
  • 批准号:
    DP240103259
  • 财政年份:
    2024
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Discovery Projects
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 70.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了