Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
基本信息
- 批准号:2332661
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As next-generation communication and satellite systems utilize more frequency bands, the potential interference risks to passive radiometer sensors used for environmental and atmospheric sensing are increasing. Thus, it is imperative to develop efficient methods to detect, characterize and mitigate anthropogenic sources of interference at passive radiometers. Radio frequency (RF) research domains, specifically those addressing the active/passive coexistence, are in critical need of datasets that enable learning-based detection, identification, and classification, as was observed in image processing domains. The goals of the project INTERACT (INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence) are 1) to collect/to currate active/passive RF coexistence datasets with ground truth information 2) to develop data-driven learning-based RF interference (RFI) detection and mitigation approaches enabled by the generated data. The datasets will be collected by an airborne passive microwave radiometer system to be deployed on the NSF's AERPAW (Aerial Experimentation and Research Platform for Advanced Wireless) platform. The proposed research will further our undertanding on spectrum sharing through passive sensing methods, RF datasets, and learning based RFI mitigation approaches. The project INTERACT proposes three key innovations: 1) A new Unmanned Aerial System (UAS) based passive radiometer system will be developed. This system together with the experimental development of various active transmission scenarios covering different geometries, transmitter parameters and waveforms at non-restricted bands will result in the first-ever large experimental RF dataset with ground truth information for passive/active RF coexistence. A digital twin for passive radiometry in the emulation environment of AERPAW will be developed to enable experimenters to facilitate extensive, yet realistic RF mitigation experiments in a Cloud environment. 2) Novel data-driven end-to-end learning-based RFI detection and mitigation approaches will be developed. The proposed solutions will focus on approaches that can achieve high-resolution RFI detection in the time-frequency domains, learning based radiometer calibration, and joint mitigation to estimate the scientific observation of radiometers under RFI. These solutions do not require centralized servers and are designed to work on passive radiometer systems in order to detect and mitigate RFI without any information exchange between coexisting systems. 3) The research will produce new deep reinforcement learning and subspace-based RFI mitigation approaches using the feedback from active and passive systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着下一代通信和卫星系统使用更多频段,用于环境和大气传感的无源辐射计传感器的潜在干扰风险正在增加。因此,必须开发有效的方法来检测、表征和减轻无源辐射计的人为干扰源。射频 (RF) 研究领域,特别是那些解决主动/被动共存的领域,迫切需要能够实现基于学习的检测、识别和分类的数据集,正如在图像处理领域中观察到的那样。 INTERACT(确保弹性主动/被动共存的集成测试平台)项目的目标是 1) 收集/整理具有地面实况信息的主动/被动射频共存数据集 2) 开发数据驱动的基于学习的射频干扰 (RFI) 检测以及由生成的数据启用的缓解方法。这些数据集将由部署在 NSF 的 AERPAW(高级无线空中实验和研究平台)平台上的机载无源微波辐射计系统收集。拟议的研究将通过无源传感方法、射频数据集和基于学习的射频干扰缓解方法进一步加深我们对频谱共享的理解。 INTERACT 项目提出了三项关键创新: 1)将开发基于无源辐射计系统的新型无人机系统(UAS)。该系统与涵盖不同几何形状、发射机参数和非限制频段波形的各种有源传输场景的实验开发一起,将产生有史以来第一个大型实验射频数据集,其中包含用于无源/有源射频共存的地面实况信息。 将开发 AERPAW 仿真环境中的无源辐射测量数字孪生,使实验人员能够在云环境中进行广泛而现实的射频缓解实验。 2) 将开发新型数据驱动的、基于学习的端到端 RFI 检测和缓解方法。所提出的解决方案将重点关注能够在时频域实现高分辨率 RFI 检测、基于学习的辐射计校准以及联合缓解以估计 RFI 下辐射计科学观测的方法。 这些解决方案不需要集中式服务器,并且设计用于无源辐射计系统,以便检测和减轻 RFI,而无需在共存系统之间交换任何信息。 3) 该研究将利用主动和被动系统的反馈产生新的深度强化学习和基于子空间的 RFI 缓解方法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查进行评估,被认为值得支持标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali Gurbuz其他文献
Enabling near-real-time safety glove detection through edge computing and transfer learning: comparative analysis of edge and cloud computing-based methods
通过边缘计算和迁移学习实现近实时安全手套检测:基于边缘和云计算的方法的比较分析
- DOI:
10.1108/ecam-07-2023-0763 - 发表时间:
2024-05-02 - 期刊:
- 影响因子:0
- 作者:
Mikias Gugssa;Long Li;Lina Pu;Ali Gurbuz;Yu Luo;Jun Wang - 通讯作者:
Jun Wang
PPE-Glove Detection for Construction Safety Enhancement Based on Transfer Learning
基于迁移学习的 PPE-手套检测以增强施工安全
- DOI:
10.1061/9780784483893.008 - 发表时间:
2022-05-24 - 期刊:
- 影响因子:0
- 作者:
Mikias Gugssa;Ali Gurbuz;Jun Wang;Junfeng Ma;Joshua Bourgouin - 通讯作者:
Joshua Bourgouin
Enhancing the Time Efficiency of Personal Protective Equipment (PPE) Detection in Real Implementations Using Edge Computing
使用边缘计算在实际实施中提高个人防护装备 (PPE) 检测的时间效率
- DOI:
10.1061/9780784485248.064 - 发表时间:
2024-01-25 - 期刊:
- 影响因子:0
- 作者:
Mikias Gugssa;Long Li;Lina Pu;Ali Gurbuz;Yu Luo;Jun Wang - 通讯作者:
Jun Wang
Ali Gurbuz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ali Gurbuz', 18)}}的其他基金
CAREER: Learning to Sense: Joint Learning of Task Oriented Cognitive Sensing with Data Driven Reconstruction and Inference
职业:学习感知:面向任务的认知感知与数据驱动的重建和推理的联合学习
- 批准号:
2047771 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CPS: Small: Collaborative Research: RF Sensing for Sign Language Driven Smart Environments
CPS:小型:协作研究:手语驱动智能环境的射频传感
- 批准号:
1931861 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于电卡效应的迅速冷热响应驱动双向形状记忆材料与结构研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
国际货币体系现状分析与未来展望:基于货币搜索理论和SWIFT数据的研究
- 批准号:72003209
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
迅速冷却等离子体射流中粒子形成过程的实验研究
- 批准号:11975185
- 批准年份:2019
- 资助金额:65 万元
- 项目类别:面上项目
草莓通过花瓣迅速脱落逃避灰葡萄孢侵染的机制研究
- 批准号:31701882
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
伯谢克辛甜瓜果肉迅速软化机理研究
- 批准号:31660464
- 批准年份:2016
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332721 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332662 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332722 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229471 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229472 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant