How does stably-stratified shear-driven turbulence mix our oceans and estuaries?

稳定分层的剪切驱动湍流如何混合我们的海洋和河口?

基本信息

  • 批准号:
    NE/W008971/1
  • 负责人:
  • 金额:
    $ 89.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

This research is ultimately motivated by reducing the harmful consequences of climate change on society, in the UK and worldwide.The root of the problem is global warming, caused by the greenhouse effect of carbon dioxide from fossil fuels. As our atmosphere warms, so do our oceans, which directly affects biodiversity and causes sea levels to rise. As our oceans warm, the balance of forces that keep them in constant motion changes too, disrupting their worldwide circulation. This disruption is worrying, both in the short and long term, because the present circulation patterns perform at least two functions vital to our hospitable climate. First, vertical currents store excess heat and carbon deep into the ocean (slowing global warming). Second, North-South currents redistribute tropical heat to more temperate regions (reducing extreme weather and climate). Therefore, a weakening of these currents could accelerate climate change, with long-lasting societal consequences.To mitigate this, scientists try to predict how the world's climate will evolve by using advanced mathematical and computer models of the ocean circulation. However, these models and their predictions need to be improved to be of greater benefit to society and decision-makers. A serious cause of uncertainty in these models lies in the mixing between water currents that have different salinity or temperature (and thus density). Currents of different densities organise into vertically-stacked (or "stably-stratified") layers which flow past one another at different speeds (creating a "shear" flow). These flows are always turbulent, which means that a vast number of tiny chaotic "eddies" mix the salinity and temperature of much larger layers in complex and unpredictable ways.This fundamental but extremely challenging process of turbulent mixing in stably-stratified shear flows needs to be better understood. To do this, I will employ the following scientific approach in three steps.First, I will use an accurate, reduced-scale model of such flows in the laboratory. This has two great benefits: it gives full control over the flow geometry, the density difference, flow speed, etc, allowing me to test and understand the influence of each parameter separately; and it allows me to use high-tech measurements to quantify the chaotic eddies and their mixing better than ever before.Second, I will interpret these new laboratory measurements with mathematical models of turbulent mixing to generalise (or "extrapolate") my findings to real-scale flows found in the ocean. This crucial step relies on the power of "dimensional analysis" in fluid dynamics, which is also routinely used by engineers to develop new aircraft or ship designs from smaller-scale laboratory prototypes.Third, I will verify the validity of my real-scale predictions by comparing them to actual measurements taken from ships (which are usually sparse, expensive, and less accurate). This step is similar to engineers performing a full-scale test before production, except that we have no control over the ocean. Although challenging, this "validation" step will help ensure that my whole approach succeeds in providing climate scientists with more accurate models for ocean mixing.In addition to the long-term effects of global warming, I will also apply the above three steps to a shorter-term consequence: saltwater intrusions in estuaries. Sea level rise, more frequent droughts, extreme storm surges, and stronger tides will all increase the gradual encroachment of seawater in densely-populated deltas (including the important Thames Basin in the UK). The upstream intrusion of a dense saltwater layer beneath the fresh river water, and their vertical mixing reduce the availability of surface freshwater, with devastating consequences for coastal communities already felt around the world. I will develop more accurate models of mixing in saltwater intrusions to help mitigate this urgent problem.
这项研究的最终目的是减少气候变化对英国和全世界社会的有害影响。问题的根源是全球变暖,这是由化石燃料产生的二氧化碳的温室效应引起的。随着大气变暖,海洋也变暖,这直接影响生物多样性并导致海平面上升。随着海洋变暖,维持海洋持续运动的力量平衡也会发生变化,从而扰乱海洋的全球循环。无论从短期还是长期来看,这种破坏都令人担忧,因为目前的环流模式至少发挥着两个对我们宜人的气候至关重要的功能。首先,垂直流将多余的热量和碳储存到海洋深处(减缓全球变暖)。其次,南北洋流将热带热量重新分配到更温带的地区(减少极端天气和气候)。因此,这些洋流的减弱可能会加速气候变化,从而产生长期的社会后果。为了缓解这一问题,科学家们试图利用先进的海洋环流数学和计算机模型来预测世界气候将如何演变。然而,这些模型及其预测需要改进,才能为社会和决策者带来更大的利益。这些模型中不确定性的一个严重原因在于具有不同盐度或温度(以及密度)的水流之间的混合。不同密度的水流组织成垂直堆叠(或“稳定分层”)的层,这些层以不同的速度流过彼此(产生“剪切”流)。这些流动始终是湍流,这意味着大量微小的混沌“涡流”以复杂且不可预测的方式混合了更大层的盐度和温度。稳定分层剪切流中的湍流混合这一基本但极具挑战性的过程需要得到更好的理解。为此,我将分三个步骤采用以下科学方法。首先,我将在实验室中使用此类流动的精确、缩小规模的模型。这有两个很大的好处:它可以完全控制流动几何形状、密度差、流速等,使我能够分别测试和了解每个参数的影响;它使我能够使用高科技测量来比以往更好地量化混沌涡流及其混合。其次,我将用湍流混合的数学模型来解释这些新的实验室测量结果,以将我的发现推广(或“外推”)为真实的结果- 海洋中发现的规模流动。这一关键步骤依赖于流体动力学中“尺寸分析”的力量,工程师也经常使用它来通过较小规模的实验室原型开发新的飞机或船舶设计。第三,我将验证我的实际规模预测的有效性通过将它们与从船上获得的实际测量值(通常稀疏、昂贵且不太准确)进行比较。这一步类似于工程师在生产前进行全面测试,只不过我们无法控制海洋。虽然具有挑战性,但这个“验证”步骤将有助于确保我的整个方法成功地为气候科学家提供更准确的海洋混合模型。除了全球变暖的长期影响之外,我还将把上述三个步骤应用到短期后果:海水入侵河口。海平面上升、更频繁的干旱、极端风暴潮和更强的潮汐都会加剧海水对人口稠密的三角洲(包括英国重要的泰晤士盆地)的逐渐侵蚀。上游淡水河水下方稠密咸水层的入侵及其垂直混合减少了地表淡水的可用性,对世界各地的沿海社区造成了毁灭性后果。我将开发更准确的盐水入侵混合模型,以帮助缓解这一紧迫问题。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Long-wave instabilities of sloping stratified exchange flows
倾斜分层交换流的长波不稳定性
  • DOI:
    10.17863/cam.105663
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhu L
  • 通讯作者:
    Zhu L
New insights into experimental stratified flows obtained through physics-informed neural networks
  • DOI:
    10.1017/jfm.2024.49
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Lu Zhu;Xianyang Jiang;A. Lefauve;R. Kerswell;P. Linden
  • 通讯作者:
    Lu Zhu;Xianyang Jiang;A. Lefauve;R. Kerswell;P. Linden
Stratified inclined duct: two-layer hydraulics and instabilities
分层倾斜风管:两层水力学和不稳定性
  • DOI:
    10.1017/jfm.2023.871
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Atoufi A
  • 通讯作者:
    Atoufi A
Geometry of stratified turbulent mixing: local alignment of the density gradient with rotation, shear and viscous dissipation
分层湍流混合的几何形状:密度梯度与旋转、剪切和粘性耗散的局部对齐
  • DOI:
    10.1017/jfm.2023.833
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jiang X
  • 通讯作者:
    Jiang X
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrien Lefauve其他文献

Adrien Lefauve的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

信用债市场做市商管理和摩擦识别:基于拓展的搜寻匹配模型分析
  • 批准号:
    72303125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
斜交斜做正交异性波纹钢拱壳的翘曲与畸变效应及整体稳定性分析
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
期权高阶矩风险溢价模型:基于做市商期权定价风险的理论建模与实证分析
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
企业先做大还是先做强?基于增长导向型战略和利润导向型战略的研究
  • 批准号:
    71902091
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
做快乐的助人者:客户污名感知对员工幸福感及工作绩效的影响机制研究
  • 批准号:
    71802140
  • 批准年份:
    2018
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
  • 批准号:
    DE240100614
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Discovery Early Career Researcher Award
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Training Grant
The excess gas paradox at volcanoes: does CO2 favor gas accumulation in mafic magmas?
火山中的过量气体悖论:二氧化碳是否有利于镁铁质岩浆中的气体积累?
  • 批准号:
    2322935
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Continuing Grant
Does chronic thyroid inflammation explain persistent symptoms in Hashimoto thyroiditis?
慢性甲状腺炎症是否可以解释桥本甲状腺炎的持续症状?
  • 批准号:
    MR/Z503617/1
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Research Grant
Does deformation lead to misinformation? How much can granitic rocks deform before accessory minerals are geochemically disturbed?
变形会导致错误信息吗?
  • 批准号:
    2342159
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了