Global significance of light-driven proton pumps in eukaryotic marine phytoplankton

光驱动质子泵在真核海洋浮游植物中的全球意义

基本信息

  • 批准号:
    NE/K013734/1
  • 负责人:
  • 金额:
    $ 38.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Sunlight is the ultimate source of energy on our planet and the efficient capture and use of light is an exquisitely evolved process across all kingdoms of life, ranging from unicellular microbes to multicellular organisms. In addition to use of light as an energy source for growth, it is also an important source of environmental information. Microbes have evolved particularly diverse systems to use light to generate energy, avoid hostile environments and identify suitable environments for nutrition and growth. The metabolic mode in which organisms convert light energy into chemical energy for growth is called phototrophy (from Greek [photo-], "light" and [trophe], "nourishment"). The most important biological process on earth to power phototrophy is oxygenic photosynthesis, which employs multisubunit protein complexes containing chlorophyll pigments known as photosystems and produces the oxygen we breathe. These photosystems are highly-efficient in capturing and using light, but heavily-depend on iron to function.Additionally, a second mechanistically distinct process, which is independent from photosystems, can also power phototrophy and employs membrane-embedded photoreceptors called rhodopsins. Rhodopsins are molecules composed of opsin membrane proteins, which bind the pigment retinal but unlike photosystems do not need iron to function. Their operating principle is based on their unitary simple nature. Instead of employing complex photosystems, which are encoded by multiple genes, rhodopsins combine the tasks of light absorption and energy-conservation into a single protein encoded by a single gene. Upon absorption of light, the chemical structure of retinal pigment changes and triggers a cascade of structural changes within the molecule. Rhodopsin photoreceptors were first discovered in ancient prokaryotic (cells lacking a nucleus and membrane-bound organelles) archaebacteria, but later also in very distantly related bacteria. The high abundance of bacterial rhodopsins in marine environments has shown that rhodopsin-based phototrophy is a globally significant microbial process in the ocean. Surprisingly, rhodopsins have recently also been identified in unicellular eukaryotes (organisms with nucleus and nuclear envelope enclosing the genetic material) including photosynthetic marine phytoplankton. However, the function of eukaryotic rhodopsins in the presence of more energy-efficient photosystems remains puzzling. In a preliminary study, we provided first experimental evidence, that genes encoding for rhodopsins are highly up-regulated in iron-limited phytoplankton. They were also more abundant in iron-limited oceans, which cover about one third of the global ocean surface. These findings provide first direct evidence for our research hypothesis that rhodopsins in marine phytoplankton provide a previously unknown backup mechanism for iron-dependent chlorophyll-based photosynthesis, to enhance production of chemical energy and growth when iron is lacking for iron-dependent photosystems. This new mechanism is of particular interest, because recent research has shown that ocean acidification due to increased dissolution of anthropogenic carbon dioxide can decrease the iron availability to phytoplankton, which probably will alter phytoplankton diversity in the oceans and favor species that have a competitive advantage (e.g. by rhodopsin-based phototrophy) under reduced iron concentrations. In our research project we will use new molecular genetic methods to test our research hypothesis and further explore the cellular role and environmental significance of rhodopsins in globally important marine phytoplankton. Our results will provide fundamental new insights into how marine phytoplankton use rhodopsins. It will be of great interest to the scientific community, because phytoplankton are subject to many different disciplines, from marine and climate science to material science and renewable energy.
阳光是我们星球上的最终能源,有效捕获和利用光是所有生命王国(从单细胞微生物到多细胞生物)的精细进化过程。光除了作为生长的能源外,也是环境信息的重要来源。微生物已经进化出特别多样化的系统,可以利用光产生能量、避开恶劣的环境并识别适合营养和生长的环境。生物体将光能转化为化学能以促进生长的代谢模式称为光营养(来自希腊语[photo-],“光”和[trope],“营养”)。地球上为光养提供动力的最重要的生物过程是含氧光合作用,它利用含有叶绿素色素(称为光系统)的多亚基蛋白质复合物,并产生我们呼吸的氧气。这些光系统在捕获和利用光方面非常高效,但在很大程度上依赖于铁来发挥作用。此外,独立于光系统的第二种机械上不同的过程也可以为光养提供动力,并使用称为视紫红质的膜嵌入光感受器。视紫红质是由视蛋白膜蛋白组成的分子,它与视网膜色素结合,但与光系统不同,它不需要铁来发挥作用。它们的工作原理基于其单一的简单性质。视紫红质没有采用由多个基因编码的复杂光系统,而是将光吸收和能量守恒的任务结合到由单个基因编码的单个蛋白质中。吸收光后,视网膜色素的化学结构发生变化,并引发分子内的一系列结构变化。视紫红质光感受器首先在古代原核(缺乏细胞核和膜结合细胞器的细胞)古细菌中发现,但后来也在关系很远的细菌中发现。海洋环境中大量的细菌视紫红质表明,基于视紫红质的光养作用是海洋中具有全球意义的微生物过程。令人惊讶的是,最近还在单细胞真核生物(具有包围遗传物质的细胞核和核膜的生物)中发现了视紫红质,包括光合海洋浮游植物。然而,真核视紫红质在更节能的光系统存在下的功能仍然令人困惑。在一项初步研究中,我们提供了第一个实验证据,表明编码视紫红质的基因在铁限制性浮游植物中高度上调。它们在铁含量有限的海洋中也更为丰富,这些海洋覆盖了全球海洋表面的约三分之一。这些发现为我们的研究假设提供了第一个直接证据,即海洋浮游植物中的视紫红质为铁依赖性叶绿素光合作用提供了一种以前未知的备用机制,当铁依赖性光系统缺乏铁时,可以增强化学能的产生和生长。这种新机制特别令人感兴趣,因为最近的研究表明,由于人为二氧化碳溶解增加而导致的海洋酸化会降低浮游植物对铁的利用率,这可能会改变海洋中浮游植物的多样性,并有利于具有竞争优势的物种。例如,在铁浓度降低的情况下通过基于视紫红质的光养作用。在我们的研究项目中,我们将使用新的分子遗传学方法来检验我们的研究假设,并进一步探索视紫红质在全球重要海洋浮游植物中的细胞作用和环境意义。我们的结果将为海洋浮游植物如何利用视紫红质提供基本的新见解。这将引起科学界的极大兴趣,因为浮游植物涉及许多不同的学科,从海洋和气候科学到材料科学和可再生能源。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus
  • DOI:
    10.1038/nature20803
  • 发表时间:
    2017-01-26
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Mock, Thomas;Otillar, Robert P.;Grigoriev, Igor V.
  • 通讯作者:
    Grigoriev, Igor V.
Diatoms glass - dwelling dynamos
硅藻玻璃——住宅发电机
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hopes A.
  • 通讯作者:
    Hopes A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Mock其他文献

Eine Unterscheidung kommunikations- und medienwissenschaftlicher Grundverständnisse eines zentralen Begriffs
通信和媒体科学基本概念
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Mock
  • 通讯作者:
    Thomas Mock

Thomas Mock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Mock', 18)}}的其他基金

High-resolution genomics to reveal changes in microbial biodiversity across space and time in the warming Arctic Ocean
高分辨率基因组学揭示北冰洋变暖中微生物生物多样性随空间和时间的变化
  • 批准号:
    NE/W005654/1
  • 财政年份:
    2022
  • 资助金额:
    $ 38.33万
  • 项目类别:
    Research Grant
Limits to Evolutionary Adaptation of Phytoplankton in the Arctic Ocean
北冰洋浮游植物进化适应的限制
  • 批准号:
    NE/R000883/1
  • 财政年份:
    2018
  • 资助金额:
    $ 38.33万
  • 项目类别:
    Research Grant
Rapid Growth Algae: An enabling technology to enhance algal growth and reduce algal production costs
快速生长藻类:一种促进藻类生长并降低藻类生产成本的技术
  • 批准号:
    NE/M005755/1
  • 财政年份:
    2014
  • 资助金额:
    $ 38.33万
  • 项目类别:
    Research Grant
From the North Sea to the Arctic Ocean: The impact of temperature on eukaryotic phytoplankton
从北海到北冰洋:温度对真核浮游植物的影响
  • 批准号:
    NE/K004530/1
  • 财政年份:
    2013
  • 资助金额:
    $ 38.33万
  • 项目类别:
    Research Grant
How diatom blooms are being formed: Identifying the genetic underpinnings of fast growth.
硅藻华是如何形成的:确定快速生长的遗传基础。
  • 批准号:
    NE/J013730/1
  • 财政年份:
    2012
  • 资助金额:
    $ 38.33万
  • 项目类别:
    Research Grant
Functional adaptation of diatoms to environmental conditions in sea ice of the Southern Ocean
硅藻对南大洋海冰环境条件的功能适应
  • 批准号:
    NE/I001751/1
  • 财政年份:
    2010
  • 资助金额:
    $ 38.33万
  • 项目类别:
    Research Grant

相似国自然基金

核苷酸代谢酶氧化修饰调控上皮干细胞命运在口腔白斑病光动力治疗复发中的机制与意义研究
  • 批准号:
    82330029
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
IL-33/ST2轴介导的巨噬细胞极化在OLK光动力治疗后复发中的作用机制及意义
  • 批准号:
    82370965
  • 批准年份:
    2023
  • 资助金额:
    70 万元
  • 项目类别:
    面上项目
黄河流域河流沉积物石英释光性质的物源和河流过程的示踪研究及其对黄河演化的指示意义
  • 批准号:
    42371004
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
四川普光地区第纳尔亚阶微生物岩对早三叠世异常海洋环境的响应和油气地质意义
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
隐色素/光修复酶家族中一类具有原始特征的新型蛋白的性质、结构、功能及进化意义的研究
  • 批准号:
    31971199
  • 批准年份:
    2019
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Physiology Core
生理学核心
  • 批准号:
    10747627
  • 财政年份:
    2023
  • 资助金额:
    $ 38.33万
  • 项目类别:
Prevent IgM MGUS Progression by Targeting the Driver Mutation
通过针对驱动突变来预防 IgM MGUS 进展
  • 批准号:
    10745013
  • 财政年份:
    2023
  • 资助金额:
    $ 38.33万
  • 项目类别:
Live-cell imaging and CLEM reveal the presence and significance of a new type of lamellipodia
活细胞成像和 CLEM 揭示了新型片状伪足的存在和意义
  • 批准号:
    23K06306
  • 财政年份:
    2023
  • 资助金额:
    $ 38.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploring the functional significance of granule cells in the olfactory bulb using holographic techniques.
使用全息技术探索嗅球中颗粒细胞的功能意义。
  • 批准号:
    23H02782
  • 财政年份:
    2023
  • 资助金额:
    $ 38.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Early diagnosis of light chain amyloidosis
轻链淀粉样变性的早期诊断
  • 批准号:
    10562721
  • 财政年份:
    2023
  • 资助金额:
    $ 38.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了