Early diagnosis of light chain amyloidosis
轻链淀粉样变性的早期诊断
基本信息
- 批准号:10562721
- 负责人:
- 金额:$ 27.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAfrican American populationAgeAgingAgreementAlgorithmsAmyloidAmyloid FibrilsAmyloidosisBayesian learningBlack PopulationsCalibrationCardiacCardiomyopathiesCessation of lifeChronic Kidney FailureClinical ResearchCohort StudiesDataData ReportingData SetDepositionDiagnosisDiagnosticDiseaseDisease ManagementDisparityEarly DiagnosisElectronic Health RecordEpidemiologyEthnic OriginFunctional disorderHeart failureHematological DiseaseHypertrophic CardiomyopathyIncidenceIndividualInsurance CoverageLightLiteratureMedicareMethodologyMonoclonal GammapathiesMonoclonal gammopathy of uncertain significanceMorbidity - disease rateMultiple MyelomaMyocardial dysfunctionOrganOutcomePathway interactionsPatient-Focused OutcomesPatientsPatternPerformancePhysiciansPlasma CellsPrecancerous ConditionsPrevalencePrognosisRaceRiskSamplingSpecialistSymptomsSystemTechniquesTestingTimeUnderserved PopulationValidationage groupbeneficiarybody systemcardiac amyloidosischemotherapyexperiencefollow-uphealth disparityhigh riskimprovedimproved outcomemachine learning algorithmmortalitynovelprediction algorithmpremalignantprimary amyloidosis of light chain typeracial differenceracial populationresponsestatistical learningtool
项目摘要
PROJECT SUMMARY
Light chain (AL) amyloidosis is a recalcitrant and deadly hematologic disease characterized by organ dysfunction
from insoluble fibril deposition derived from clonal free light chains arising from a monoclonal gammopathy. The
disease has a high early mortality of 40-45% at two years due to heart failure. Patients with advanced AL
amyloidosis have high morbidity and mortality in the initial period after diagnosis owing to cardiac dysfunction.
Despite experiencing multiple symptoms and demonstrating signs of the disease, many patients are diagnosed
late, sometimes by years, because these ‘precursor diagnoses’ are often non-specific. Observational data also
suggest that Black individuals are more likely to be underdiagnosed with cardiac amyloidosis. Monoclonal
gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (MGUS+) are more
common in Black individuals, as is the prevalence of hypertrophic cardiomyopathy and chronic kidney disease,
both of which also occur in AL amyloidosis. We hypothesize that patients can be diagnosed early by assessing
the patterns of precursor diagnoses that predate AL amyloidosis diagnosis. Our application seeks to create an
algorithm using Bayesian machine learning statistical methodology to create an alert system that can help guide
physicians toward early consideration of an AL amyloidosis diagnosis. We will execute the following specific
aims using nationally representative Medicare data: 1) Identify patterns of precursor diagnoses associated with
the occurrence of AL amyloidosis and develop a predictive algorithm using Bayesian machine learning
techniques in Medicare beneficiaries with MGUS+. Patterns will be examined longitudinally at one-year
timepoints over a five-year period preceding the AL amyloidosis diagnosis contrasting between MGUS+ with
known AL and MGUS+ with no known AL to identify patterns that might best predict disease. 2) Study the
performance of the predictive MGUS-AL algorithm. This will be assessed internally in the Medicare data set,
overall and by race groups (Aim 2A) and external validation using TriNetX multicenter EHR data for MGUS+
patients of all ages, races, and insurance coverage (Aim 2B). 3) Estimate the number of potentially undiagnosed
AL amyloidosis patients with MGUS+. Based on the patterns identified in Aim 1 and validated in Aim 2, we will
identify subjects at high risk for undiagnosed AL amyloidosis (Aim 3A) and estimate the excess 2-year mortality
and number of potential lives saved by our early warning system, overall and by racial group (Aim 3B). This
study provides an unprecedented opportunity to identify patterns of precursor diagnoses to diagnose AL
amyloidosis early. An important anticipated outcome is to improve health disparities by increasing AL amyloidosis
diagnosis in Black individuals who are already at higher risk for MGUS and other end-organ damage associated
with AL amyloidosis. The novel, rigorous and easy-to-implement early warning system has the potential to
transform the outcomes of patients with AL amyloidosis by allowing the diagnosis to occur at an early stage.
项目摘要
轻链(AL)淀粉样变性是一种由器官功能障碍的顽固性和致命的血液学疾病
来自由单克隆胶质病引起的克隆游离光链得出的不溶性纤维矿床。这
由于心力衰竭,疾病在两年后的早期死亡率高40-45%。晚期AL患者
由于心脏功能障碍,在诊断后的初期,淀粉样变性具有高发病率和死亡率。
尽管经历了多种症状并证明了这种疾病的迹象,但许多患者被诊断出
迟到,有时是多年来,因为这些“前体诊断”通常不是特定的。观察数据也是如此
表明黑人个体更有可能被心脏淀粉样变性诊断出来。单克隆
不确定意义(MGU)和闷烧多发性骨髓瘤(MGUS+)的伽马病更为
在黑人个体中很常见,肥厚性心肌病和慢性肾脏疾病的患病率也
两者也发生在Al淀粉样变性中。我们假设可以通过评估可以尽早诊断患者
前体诊断的模式早于Al淀粉样变性诊断。我们的应用程序旨在创建一个
使用贝叶斯机器学习统计方法来创建一个警报系统,可以帮助指导指导的算法
医师早日考虑淀粉样变性诊断。我们将执行以下特定
使用全国代表Medicare数据的目的:1)确定与之相关的前体诊断模式
AL淀粉样变性的发生并使用贝叶斯机器学习开发预测算法
MGUS+Medicare受益人的技术。模式将在一年中纵向检查
在MGUS+之间的Al淀粉样变性诊断对比之前的五年内的时间点
已知的AL和MGUS+没有已知的Al来识别可以最好预测疾病的模式。 2)研究
预测MGUS-AL算法的性能。这将在Medicare数据集内部进行评估,
使用Trinetx多中心EHR数据进行MGUS+的总体和竞赛组(AIM 2A)和外部验证
各个年龄段,种族和保险范围的患者(AIM 2B)。 3)估计潜在的未诊断的数量
MGUS+的Al淀粉样变性患者。基于AIM 1中确定的模式并在AIM 2中验证,我们将
确定未诊断淀粉样蛋白病的高风险的受试者(AIM 3A),并估计多余的2年死亡率
我们的预警系统,整体和种族群体(AIM 3B)挽救了潜在的生命。这
研究提供了一个前所未有的机会,可以识别前体诊断模式来诊断
早期淀粉样变性。一个重要的预期结果是通过增加AL淀粉样变性来改善健康差异
黑人诊断已经面临MGU和其他最终器官损害的风险较高的黑人诊断
与Al淀粉样变性。这部小说,严格且易于实施的预警系统有可能
通过允许早期诊断来改变AL淀粉样变性患者的结局。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anita D'Souza其他文献
Anita D'Souza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anita D'Souza', 18)}}的其他基金
Development and validation of a disease-relevant patient-reported outcome tool in light chain amyloidosis
轻链淀粉样变性疾病相关患者报告结果工具的开发和验证
- 批准号:
9918952 - 财政年份:2019
- 资助金额:
$ 27.3万 - 项目类别:
Development and validation of a disease-relevant patient-reported outcome tool in light chain amyloidosis
轻链淀粉样变性疾病相关患者报告结果工具的开发和验证
- 批准号:
10396983 - 财政年份:2019
- 资助金额:
$ 27.3万 - 项目类别:
相似海外基金
Hospice exposure and utilization among older African Americans with ADRD and their decisional support persons
患有 ADRD 的老年非洲裔美国人及其决策支持人员的临终关怀暴露和利用
- 批准号:
10679558 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
The Role of Lipids in Alzheimer's Disease and Related Dementias among Black Americans: Examining Lifecouse Mechanisms
脂质在美国黑人阿尔茨海默病和相关痴呆中的作用:检查生命机制
- 批准号:
10643344 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Elucidating novel epigenetic modifications implicated in multiple myeloma risk disparities
阐明与多发性骨髓瘤风险差异相关的新型表观遗传修饰
- 批准号:
10912191 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Addressing sleep health disparities from within: A community-engaged study to understanding sleep and cardiometabolic disease risk among women of color
从内部解决睡眠健康差异:一项社区参与的研究,旨在了解有色人种女性的睡眠和心脏代谢疾病风险
- 批准号:
10815470 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Role of YB1 in health disparities in triple negative breast cancer
YB1 在三阴性乳腺癌健康差异中的作用
- 批准号:
10655943 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别: