A Laboratory Study of the Photolysis of the ClO Dimer

ClO二聚体光解的实验室研究

基本信息

  • 批准号:
    NE/F01791X/1
  • 负责人:
  • 金额:
    $ 41.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

The stratospheric ozone layer, located between altitudes of approximately 15 and 40 km, performs a number of critical roles in the Earth's atmosphere: It shields the biosphere from harmful UV radiation, determines the temperature structure and hence affects the circulation of the stratosphere, and is a radiatively active gas, that is, it acts as a greenhouse gas in our atmosphere. Following discovery of the 'ozone hole' over Antarctica in the early 1980s, considerable scientific effort has focussed upon understanding the causes of ozone depletion. Anthropogenic emissions have increased the stratospheric halogen loading, while the meteorological conditions of the polar stratosphere following the polar night favour a specific chemical reaction cycle: ClO radicals undergo self-reaction to form a dimer, Cl2O2, which photolyses releasing the constituent Cl atoms, which in turn react with ozone reforming ClO. The rate of this cycle, which is the major route for polar stratospheric ozone destruction, depends upon the photolysis rate (absorption cross sections) of Cl2O2. A number of laboratory studies of the absorption cross sections of Cl2O2 have been performed previously, with some disagreement between studies, particularly at wavelengths above 300 nm, where the signal is small and hence hard to measure, and interference effects from laboratory precursors may be significant. Unfortunately this is also the key region for the atmosphere / due to the spectral distribution of actinic flux, only wavelengths above 300 nm contribute significantly to the atmospheric photolysis of Cl2O2. Recently, measurements of ClOx species in the atmosphere from various remote sensing and in situ techniques have been used to constrain the photochemistry of Cl2O2, with results suggesting the cross sections should be *higher* than the evaluations (NASA-JPL, IUPAC) suggest. However, in March 2007 a new study of the Cl2O2 cross sections was published, from a highly respected laboratory kinetics group, which found the Cl2O2 photolysis rate to be a factor of 6 *lower* than earlier measurements indicated. This result implies that we do not have a quantitative understanding of polar stratospheric ozone loss, a finding of great scientific and societal importance. The aim of this project is to apply a new approach to the study of the photochemistry of Cl2O2, using a range of novel instrumentation to unequivocally constrain the various species present. In essence, we will generate Cl2O2 in a laboratory system under conditions representative of the polar stratosphere, photolyse the Cl2O2 at selected wavelengths using a laser, and measure the Cl atoms produced. We will use a resonance fluorescence technique to detect the Cl atoms, affording orders of magnitude greater sensitivity than the absorption approach employed previously, and will use Chemical Ionisation Mass Spectrometry (CIMS) to quantify both the Cl2O2, and interferant species such as Cl2 and Cl2O / the presence of which is likely to be responsible for discrepancies between previous studies. Again the detection limits for the CIMS system are orders of magnitude better than for the absorption approaches used previously. Our focus will be on the 300-350 nm region critical to the stratosphere. Experiments will be conducted at Birmingham, led by Dr William Bloss, using a new CIMS system developed for atmospheric field measurements by Dr Carl Percival from the University of Manchester. Our results will determine the photolysis rate for Cl2O2, and hence the rate of ozone destruction through the ClO + ClO cycle, with much greater accuracy and precision than has been achieved previously, and will address the discrepancies between previous measurements. Through our Project Partner, Prof. Martyn Chipperfield at the University of Leeds, our results will be incorporated in models of stratospheric chemistry and transport, to determine revised ozone loss rates for comparison with observations.
位于大约15至40 km之间的平流层臭氧层在地球大气中扮演许多关键作用:它屏蔽了生物圈免受有害紫外线辐射的影响,决定了温度结构,因此影响了平流层的循环,并且是一种辐射活性气体的循环,即在我们的大气层中起到辐射活性。在1980年代初发现南极洲的“臭氧孔”之后,大量的科学努力集中在理解臭氧耗竭的原因上。人为的排放增加了平流层卤素的负荷,而极性夜晚的极性平流层的气象条件有利于特定的化学反应循环:Clo自由基经历自我反应,形成二聚体Cl2O2,从而使该二聚体释放出释放组成型CL原子,从而又与焦油反应反应。该循环的速率,这是极地平流层臭氧破坏的主要途径,取决于Cl2O2的光解速率(吸收横截面)。先前已经对CL2O2的吸收横截面进行了许多实验室研究,研究之间存在一些分歧,特别是在300 nm以上的波长下,信号很小,因此很难测量,而实验室前体的干扰效应可能很重要。不幸的是,由于阳光通量的光谱分布,这也是大气 /大气的关键区域,仅超过300 nm的波长对CL2O2的大气光解会产生显着贡献。最近,通过各种遥感和原位技术的大气中的clox物种的测量已被用来限制Cl2O2的光化学,结果表明,横截面应 * *高于评估(NASA-JPL,IUPAC)建议。然而,2007年3月,来自备受推崇的实验室动力学组的CL2O2横截面的一项新研究,发现CL2O2光解速率比早期所指出的测量值低6 * *。这一结果意味着我们对极地平流层臭氧丧失的定量了解,这是对科学和社会重要性的发现。该项目的目的是将新方法应用于CL2O2光化学的研究,并使用一系列新型的仪器来明确限制存在的各种物种。从本质上讲,我们将在代表极性平流层的条件下在实验室系统中生成CL2O2,使用激光在选定的波长处将CL2O2照相,并测量产生的CL原子。我们将使用一种共振荧光技术来检测CL原子,比以前采用的吸收方法更高的敏感性,并将使用化学电离质谱法(CIM)来量化CL2O2的量化,以及对Cl2和Cl2O / Cl2O /可能对以前的研究负责的cl2O2和干扰物物种的量化。同样,CIMS系统的检测极限比以前使用的吸收方法要好。我们的重点将放在平流层至关重要的300-350 nm区域。通过威廉·布洛斯(William Bloss)博士领导的伯明翰,使用新的CIMS系统为曼彻斯特大学卡尔·珀西瓦尔(Carl Percival)博士开发的新CIMS系统进行实验。我们的结果将确定CL2O2的光解速率,从而确定通过CLO + CLO循环的臭氧破坏速率,其准确性和精度比以前的精度要高得多,并且将解决以前测量之间的差异。通过我们的项目合作伙伴,利兹大学的Martyn Chipperfield教授,我们的结果将纳入平流层化学和运输模型中,以确定修订后的臭氧损失率与观测值进行比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Bloss其他文献

William Bloss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Bloss', 18)}}的其他基金

West Midlands Air Quality Improvement Programme
西米德兰兹空气质量改善计划
  • 批准号:
    NE/S003487/1
  • 财政年份:
    2019
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Research Grant
Integrated Research Observation System for Clean Air (OSCA)
清洁空气综合研究观测系统(OSCA)
  • 批准号:
    NE/T001976/1
  • 财政年份:
    2019
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Research Grant
Total Ozone Reactivity: A new measurement of volatile organic compounds in the atmosphere
臭氧总反应性:大气中挥发性有机化合物的新测量方法
  • 批准号:
    NE/P003524/1
  • 财政年份:
    2016
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Research Grant
Does Ozonolysis Chemistry affect Atmospheric Marine Boundary Layer Sulphur Cycling ?
臭氧分解化学是否影响大气海洋边界层硫循环?
  • 批准号:
    NE/N013654/1
  • 财政年份:
    2016
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Research Grant
Sources of Nitrous Acid in the Atmospheric Boundary Layer
大气边界层中亚硝酸的来源
  • 批准号:
    NE/M013545/1
  • 财政年份:
    2016
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Research Grant
An Integrated Study of Air Pollution Processes in Beijing
北京市空气污染过程综合研究
  • 批准号:
    NE/N007077/1
  • 财政年份:
    2016
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Research Grant
An Integrated Study of Air Pollutant Sources in the Delhi National Capital Region (NCR)
德里国家首都地区 (NCR) 空气污染物源综合研究
  • 批准号:
    NE/P016499/1
  • 财政年份:
    2016
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Research Grant
New International Collaborations for Atmospheric Ozone Research
大气臭氧研究的新国际合作
  • 批准号:
    NE/M00581X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Research Grant
Reactions of Stabilised Criegee Intermediates in the Atmosphere: Implications for Tropospheric Composition & Climate
大气中稳定的 Criegee 中间体的反应:对对流层组成的影响
  • 批准号:
    NE/K005448/1
  • 财政年份:
    2013
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Research Grant
ICOZA: Integrated Chemistry of Ozone in the Atmosphere
ICOZA:大气中臭氧的综合化学
  • 批准号:
    NE/K012169/1
  • 财政年份:
    2013
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Research Grant

相似国自然基金

文本—行人图像跨模态匹配的鲁棒性特征学习及语义对齐研究
  • 批准号:
    62362045
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于深度学习方法的南海海气耦合延伸期智能预报研究
  • 批准号:
    42375143
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向机器人复杂操作的接触形面和抓取策略共适应学习
  • 批准号:
    52305030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社交媒体中的上市公司谣言识别、后果及治理研究:多模态深度学习视角
  • 批准号:
    72302018
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
资源受限下集成学习算法设计与硬件实现研究
  • 批准号:
    62372198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Identifying Proteins in the Microtubule Lumen
识别微管腔中的蛋白质
  • 批准号:
    8367606
  • 财政年份:
    2012
  • 资助金额:
    $ 41.49万
  • 项目类别:
A Laboratory Study of the Photolysis of the ClO Dimer
ClO二聚体光解的实验室研究
  • 批准号:
    NE/F018045/1
  • 财政年份:
    2009
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Research Grant
In vivo two photon imaging of stem cell differentiation
干细胞分化的体内双光子成像
  • 批准号:
    7016557
  • 财政年份:
    2006
  • 资助金额:
    $ 41.49万
  • 项目类别:
Interactions Among Hippocampal Interneuron Circuits
海马中间神经元回路之间的相互作用
  • 批准号:
    7086530
  • 财政年份:
    2006
  • 资助金额:
    $ 41.49万
  • 项目类别:
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
  • 批准号:
    7293610
  • 财政年份:
    2006
  • 资助金额:
    $ 41.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了