Southampton Imaging: 3D imaging at millimetre to nanometre scales for regenerative medicine using multiple complimentary modalities
南安普顿成像:使用多种互补模式进行毫米至纳米尺度的再生医学 3D 成像
基本信息
- 批准号:MR/L012626/1
- 负责人:
- 金额:$ 148.05万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Regenerative medicine aims to make tissues and organs to repair damaged and diseased tissues and restore the body to its original health. It uses stems cells and precursor cells that, under exactly the right conditions, will change into the specialized cells needed to repair the tissue. Scaffolds upon which the cells can grow and be guided are used to help organize the cells into the right structures. We are now in a unique position to create new soft and hard tissues (e.g. liver, neural, cartilage, bone) to help aid treatment for all. Important in this goal of moving to clinical application will be to ensure the new formed tissue is completely safe.One of the most important factors that determines the effectiveness and normal functioning of a tissue is the way it is structured or arranged (the architecture of the tissue- like a bridge). This tissue architecture is important at many different scales, from individual cell components to the large scale organization of structures such as bones or blood vessels and nerves supplying the organs. Therefore to understand the appropriate structures required and check that the tissue constructs made are performing correctly we need to be able to 'see' these by using microscopic imaging at different magnifications. Because the cells and tissues are three-dimensional (3D) structures, we need to see how they fit together in 3D to understand their architecture - in the same way we can understand how the elements of a building fit together and function effectively in 3D by walking around it. This application is for three imaging systems specially designed to create 3D images of tissues and scaffolds at 3 different scales. The highest magnification is provided by a scanning electron microscope combined with a microtome- this gradually removes very thin (<50nm) slices from the sample imaging the surface that is revealed after each slice. This creates a stack of images representing the structure of the cells down to the components making up the cells and the fine detail of scaffolds- with this technique the membranes within the cells can clearly be seen. The next level of magnification uses a light microscope that shines a very thin sheet of light (4-10 micro meters). This allows us to look at much larger blocks of tissue (up to a cm cube - a sugar cube) without cutting it and again create a 3D image stack to represent this. Individual cells are easily seen and they can be labelled so we can identify cell types and track them over time. However there are some samples that light will not penetrate or that are too large - for these samples the third instrument, a high resolution microCT (computed tomography) imaging device is used. This uses X-rays to image through large samples without damaging them and the design of this new instrument can allows us to distinguish individual cells and some of their features in a way that is not currently possible.These systems will add to the wide range of existing imaging facilities in Southampton that are supported by 12 expert imaging staff. The existing expertise in sample preparation and biological image interpretation is essential for these cutting edge imaging techniques to be used effectively. An additional problem in 3D imaging at all scales is the very large digital image sets that are produced- each taking large amounts of storage; 50-1000Gb (equivalent of 10-200 DVDs each!). Southampton University is a world leader in advanced computing and image processing - we already have state of the art computing hardware and software. In this project we will work with our collaborators in the University to further develop these specifically for the processing and analysis of images of regenerative medicine samples. We expect regenerative medicine to transform human health over the next 10-30 years and in order to fulfill this promise as quickly and safely as possible it is essential we can image the generated structures and tissues.
再生医学旨在使组织和器官修复受损和患病的组织,并将身体恢复为原始健康。它使用茎细胞和前体细胞,这些细胞在正确的条件下会变成修复组织所需的专门细胞。细胞可以生长和引导的脚手架用于帮助将细胞组织到正确的结构中。现在,我们处于独特的位置,可以创建新的软组织(例如肝脏,神经,软骨,骨骼),以帮助所有人治疗。在转移临床应用的目标中,重要的是要确保新形成的组织完全安全。决定组织的有效性和正常功能的最重要因素之一是结构或布置的方式(像桥梁一样的组织结构)。从单个细胞成分到诸如骨骼或血管以及提供器官的神经等结构的大规模组织,这种组织结构在许多不同的尺度上都很重要。因此,要了解所需的适当结构并检查制作的组织结构是否正确执行,我们需要能够通过在不同的宏伟速度下使用微观成像来“看到”这些结构。由于细胞和组织是三维(3D)结构,因此我们需要查看它们如何在3D中融合在一起以了解它们的结构 - 就像我们可以理解建筑物的元素如何通过围绕它行走有效地在3D中融合在一起。该应用适用于三个专门设计的成像系统,该系统是在3种不同尺度上创建组织和脚手架的3D图像。最高的放大倍数是由扫描电子显微镜与微型型组合结合的 - 这逐渐从样品成像每个切片后揭示的表面成像的样品成像的非常薄(<50nm)的切片。这会创建一堆图像,代表细胞的结构,直至组成细胞的组件以及脚手架的细节 - 使用此技术可以清楚地看到细胞内的膜。下一个放大层的水平使用光学显微镜,该光显微镜会照亮一张非常薄的光(4-10微米)。这使我们能够查看更大的组织块(最多是CM立方体 - 糖立方体),而无需切割它,然后再次创建一个3D图像堆栈来表示。很容易看到单个单元格,并且可以标记它们,因此我们可以识别细胞类型并随着时间的推移跟踪它们。但是,有些样品将光线不会穿透或太大 - 对于这些样品,第三个仪器是使用高分辨率的微分离(计算机断层扫描)成像装置。这使用X射线通过大型样品进行映像,而不会损坏它们,并且该新仪器的设计可以使我们以目前不可能的方式区分单个单元格及其某些功能。这些系统将添加到南安普敦的广泛现有成像设施,这些设施由12名专家成像员工支持。样品制备和生物图像解释中的现有专业知识对于要有效使用的这些尖端成像技术至关重要。在所有尺度上,3D成像中的另一个问题是产生的非常大的数字图像集 - 每个都有大量存储; 50-1000GB(相当于10-200 dvds!)。南安普敦大学(Southampton University)是高级计算和图像处理的世界领导者 - 我们已经拥有最新的计算硬件和软件。在这个项目中,我们将与大学的合作者合作,进一步开发这些专门用于处理和分析再生医学样品图像。我们预计再生医学将在未来10 - 30年内改变人类健康,为了尽快,安全地实现这一诺言,我们可以对生成的结构和组织进行成像。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bone Tissue Engineering.
- DOI:10.1007/s40610-015-0022-2
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Black CR;Goriainov V;Gibbs D;Kanczler J;Tare RS;Oreffo RO
- 通讯作者:Oreffo RO
A blueprint for translational regenerative medicine.
- DOI:10.1126/scitranslmed.aaz2253
- 发表时间:2020-12-02
- 期刊:
- 影响因子:17.1
- 作者:Armstrong JPK;Keane TJ;Roques AC;Patrick PS;Mooney CM;Kuan WL;Pisupati V;Oreffo ROC;Stuckey DJ;Watt FM;Forbes SJ;Barker RA;Stevens MM
- 通讯作者:Stevens MM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Oreffo其他文献
Richard Oreffo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Oreffo', 18)}}的其他基金
Correlative In Vivo Fluorescence and Micro-Computed Tomographic Imaging of Tissue Structure and Function
组织结构和功能的相关体内荧光和显微计算机断层成像
- 批准号:
BB/S019480/1 - 财政年份:2019
- 资助金额:
$ 148.05万 - 项目类别:
Research Grant
Identifying the skeletal stem cell for regeneration: harnessing smart nanoparticles and single cell DropSeq molecular profiling platforms
识别用于再生的骨骼干细胞:利用智能纳米粒子和单细胞 DropSeq 分子分析平台
- 批准号:
BB/P017711/1 - 财政年份:2017
- 资助金额:
$ 148.05万 - 项目类别:
Research Grant
Harnessing Clay Gels for Cell, Growth Factor and Protein delivery for Regenerative Medicine
利用粘土凝胶为再生医学提供细胞、生长因子和蛋白质
- 批准号:
BB/P017304/1 - 财政年份:2016
- 资助金额:
$ 148.05万 - 项目类别:
Research Grant
Smart materials for targeted stem cell fate and function in skeletal repair
用于骨骼修复中靶向干细胞命运和功能的智能材料
- 批准号:
BB/L00609X/1 - 财政年份:2014
- 资助金额:
$ 148.05万 - 项目类别:
Research Grant
Skeletal stem cell based tissue engineering
基于骨骼干细胞的组织工程
- 批准号:
BB/M013057/1 - 财政年份:2014
- 资助金额:
$ 148.05万 - 项目类别:
Research Grant
The use of microRNAs and nanotopography to modulate skeletal stem cell fate and function
使用 microRNA 和纳米形貌来调节骨骼干细胞的命运和功能
- 批准号:
BB/L021072/1 - 财政年份:2014
- 资助金额:
$ 148.05万 - 项目类别:
Research Grant
Taiwan Partnering Award: Building Research & Translation Regenerative Medicine Capacity between University of Southampton & Taipei Medical University
台湾合作奖:建筑研究
- 批准号:
BB/L026384/1 - 财政年份:2014
- 资助金额:
$ 148.05万 - 项目类别:
Research Grant
Overcoming the Limitations of Allograft in Impaction Bone Grafting for Revision Arthroplasty
克服同种异体移植在打压骨移植修复关节置换术中的局限性
- 批准号:
G0802397/1 - 财政年份:2010
- 资助金额:
$ 148.05万 - 项目类别:
Research Grant
Stem Cell Differentiation & Genomic Processes in Response to Bioactive Nanotopography
干细胞分化
- 批准号:
BB/G006970/1 - 财政年份:2009
- 资助金额:
$ 148.05万 - 项目类别:
Research Grant
Device for Enrichment of Skeletal Stem Cells for Orthopaedic Applications
用于骨科应用的骨骼干细胞富集装置
- 批准号:
TS/G001650/1 - 财政年份:2009
- 资助金额:
$ 148.05万 - 项目类别:
Research Grant
相似国自然基金
面向精密元件3D形貌测量的显微条纹投影鲁棒成像关键技术研究
- 批准号:62303392
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽视角大景深集成成像3D显示技术
- 批准号:62375009
- 批准年份:2023
- 资助金额:54.00 万元
- 项目类别:面上项目
基于3D结构光和X-CT成像的再生稻再生力表型挖掘与可视化生长预测
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于单像素探测器的被部分遮挡动态目标3D成像方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单像素探测器的被部分遮挡动态目标3D成像方法研究
- 批准号:62205127
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
MRI-based, patient-specific 3D bone imaging for orthopaedic surgery planning
基于 MRI 的患者特异性 3D 骨成像,用于骨科手术规划
- 批准号:
10106117 - 财政年份:2024
- 资助金额:
$ 148.05万 - 项目类别:
Launchpad
超音波断層画像再構成による発育性股関節形成不全3Dモデル作成法開発と検証
使用超声断层扫描图像重建开发和验证发育性髋关节发育不良的 3D 模型创建方法
- 批准号:
24K21153 - 财政年份:2024
- 资助金额:
$ 148.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
弱教師付き学習による衛星画像からの3D土地被覆地図生成
使用弱监督学习从卫星图像生成 3D 土地覆盖图
- 批准号:
23K24865 - 财政年份:2024
- 资助金额:
$ 148.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Equipment: MRI: Track 2 Acquisition of a Novel Performance-Driven 3D Imaging System for Extremely Noisy Objects (NPIX)
设备: MRI:第 2 道采购新型性能驱动的 3D 成像系统,用于极噪物体 (NPIX)
- 批准号:
2319708 - 财政年份:2023
- 资助金额:
$ 148.05万 - 项目类别:
Continuing Grant
CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
- 批准号:
2237309 - 财政年份:2023
- 资助金额:
$ 148.05万 - 项目类别:
Continuing Grant