EPSRC New Horizons 2021: Engineering synthetic synapses between artificial and biological cells.

EPSRC New Horizo​​ns 2021:人工细胞和生物细胞之间的工程合成突触。

基本信息

  • 批准号:
    EP/X018903/1
  • 负责人:
  • 金额:
    $ 25.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Cells from the immune system have the ability to target and kill other undesirable cells, for instance cancer cells. A key mechanism underpinning recognition and killing is the formation of an "immune synapse" - a region of close contact between the membranes of the target and immune cell. Among other functions, the immune synapse enables localised and selective delivery of toxic compounds from the immune cell to the target cell, leading to death of the target. Besides playing a critical role in the natural immune response, immune cells known as T cells form the basis of modern cancer immunotherapies, where T cells extracted from the patients are genetically engineered to help them target the specific cancer the patient has, before being reintroduced in the body. These therapies have proven very successful, particularly for some types of blood cancer, but their broad application is hindered by the technical challenges associated to performing genetic engineering on patient cells, which results in very high costs for healthcare systems.Inspired by the action of immune cells here we propose to construct "artificial immune cells" able to selectively and controllably form "synthetic immune synapses", which target cancer cells and inject them with anti-cancer drugs. If successful, these synthetic cell-like agents could underpin novel therapies that represent a more scalable and sustainable alternative to live-cell immunotherapies.With the term "artificial cell" we describe a broad variety of fully synthetic micromachines constructed from scratch, borrowing building blocks from biology (proteins, lipid membranes) and complementing them with synthetic nanostructures. Artificial cells can serve as model systems to better understand basic biological phenomena but are often designed to target specific problems in healthcare, such as diagnostics and therapeutics. Compared to live biological cells, artificial cells are easier to program, cheaper to manufacture and carry fewer risks and ethical concerns. However, artificial cells are still unable to replicate some of the highly complex behaviours of biological cells, including the ability to target and kill cancer cells. With the proposed research project, we plan to tackle this bottleneck through a combination of protein engineering and DNA nanotechnology, which we will use to construct new molecular machines that mediate immune synapse formation. Protein engineering takes natural proteins as the starting point, and then modifies them to impart new functionalities. DNA nanotechnology, in turn, utilises synthetic nucleic acid molecules like molecular Lego bricks, to construct functional nanoscale machines with precisely controlled shape and functionality. Synthetic capsules (vesicles) formed from lipid bilayers and mimicking the membrane of biological cells will constitute the chassis of the artificial cells, which will be decorated with the synapse forming protein/DNA machinery and encapsulate the therapeutic agent to be injected in the cancer cell.For this initial proof-of-concept study we will construct and optimise the protein and DNA machinery and equip the artificial cells with it, before testing the so-formed agents on model cancer cells in vitro, using "test tube" experiments that mimic the conditions found in the body. The information we gather on the robustness of the artificial cells and their ability to target cancer cells selectively and effectively will inform subsequent translational studies in which we will test the artificial therapeutic agents in vivo, starting with animal models.
免疫系统的细胞有能力瞄准并杀死其他不需要的细胞,例如癌细胞。支持识别和杀伤的关键机制是“免疫突触”的形成,即目标细胞膜和免疫细胞膜之间紧密接触的区域。除其他功能外,免疫突触能够将有毒化合物从免疫细胞局部选择性地递送至靶细胞,从而导致靶标死亡。除了在自然免疫反应中发挥关键作用外,被称为 T 细胞的免疫细胞构成了现代癌症免疫疗法的基础,从患者身上提取的 T 细胞经过基因工程改造,帮助它们针对患者患有的特定癌症,然后重新引入到治疗中。身体。这些疗法已被证明非常成功,特别是对于某些类型的血癌,但它们的广泛应用受到与对患者细胞进行基因工程相关的技术挑战的阻碍,这导致医疗保健系统的成本非常高。受到免疫作用的启发在这里,我们建议构建“人工免疫细胞”,能够选择性、可控地形成“合成免疫突触”,针对癌细胞并向其注射抗癌药物。如果成功,这些合成的类细胞制剂可以支持新的疗法,这些疗法代表了活细胞免疫疗法更具可扩展性和可持续性的替代方案。通过“人工细胞”一词,我们借用了构建模块来描述从头开始构建的各种完全合成的微型机器来自生物学(蛋白质、脂质膜)并用合成纳米结构对其进行补充。人造细胞可以作为模型系统来更好地理解基本的生物现象,但通常旨在针对医疗保健中的特定问题,例如诊断和治疗。与活的生物细胞相比,人造细胞更容易编程,制造成本更低,风险和伦理问题也更少。然而,人造细胞仍然无法复制生物细胞的一些高度复杂的行为,包括靶向和杀死癌细胞的能力。在拟议的研究项目中,我们计划通过蛋白质工程和 DNA 纳米技术的结合来解决这一瓶颈,我们将用它来构建介导免疫突触形成的新分子机器。蛋白质工程以天然蛋白质为起点,然后对其进行修饰以赋予新的功能。反过来,DNA 纳米技术利用合成核酸分子(如分子乐高积木)来构建具有精确控制形状和功能的功能性纳米级机器。由脂质双层形成并模仿生物细胞膜的合成胶囊(囊泡)将构成人造细胞的底盘,该底盘将用突触形成蛋白/DNA机制装饰,并将要注射到癌细胞中的治疗剂封装起来。对于这项初步的概念验证研究,我们将构建和优化蛋白质和 DNA 机器,并为其配备人工细胞,然后使用模拟癌细胞的“试管”实验在体外测试如此形成的药剂。中发现的条件 身体。我们收集的关于人造细胞的稳健性及其选择性和有效地靶向癌细胞的能力的信息将为后续的转化研究提供信息,在这些研究中,我们将从动物模型开始在体内测试人造治疗剂。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sculpting DNA-based synthetic cells through phase separation and phase-targeted activity
通过相分离和相靶向活性来塑造基于 DNA 的合成细胞
  • DOI:
    http://dx.10.17863/cam.101928
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Malouf L
  • 通讯作者:
    Malouf L
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lorenzo Di Michele其他文献

Lipid vesicle-based molecular robots
  • DOI:
    10.1039/d3lc00860f
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Zugui Peng;Shoji Iwabuchi;Kayano Izumi;Sotaro Takiguchi;Misa Yamaji;Shoko Fujita;Harune Suzuki;Fumika Kambara;Genki Fukasawa;Aileen Cooney;Lorenzo Di Michele;Yuval Elani;Tomoaki Matsuura;Ryuji Kawano
  • 通讯作者:
    Ryuji Kawano
Modulating membrane fusion through the design of fusogenic DNA circuits and bilayer composition
  • DOI:
    10.1039/d2sm00863g
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Miguel Paez-Perez;I. Alasdair Russell;Pietro Cicuta;Lorenzo Di Michele
  • 通讯作者:
    Lorenzo Di Michele
Reduced non-specific binding of super-resolution DNA-PAINT markers by Shielded DNA-PAINT labeling protocols
通过屏蔽 DNA-PAINT 标记方案减少超分辨率 DNA-PAINT 标记的非特异性结合
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Evelina Lučinskaitė;A. Bokhobza;Andrew Stannard;Anna Meletiou;Chris Estell;Steven West;Lorenzo Di Michele;Christian Soeller;Alexander H. Clowsley
  • 通讯作者:
    Alexander H. Clowsley
Interaction with prefibrillar species and amyloid-like fibrils changes the stiffness of lipid bilayers
  • DOI:
    10.1039/c7cp05339h
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Bruno C. Borro;Lucia Parolini;Pietro Cicuta;Vito Foderà;Lorenzo Di Michele
  • 通讯作者:
    Lorenzo Di Michele
Melting transition in lipid vesicles functionalised by mobile DNA linkers
  • DOI:
    10.1039/c6sm01515h
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Stephan Jan Bachmann;Jurij Kotar;Lucia Parolini;Anđela Šarić;Pietro Cicuta;Lorenzo Di Michele;Bortolo Matteo Mognetti
  • 通讯作者:
    Bortolo Matteo Mognetti

Lorenzo Di Michele的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lorenzo Di Michele', 18)}}的其他基金

2022BBSRC-NSF/BIO: Self-replicating synthetic cells programmed by RNA
2022BBSRC-NSF/BIO:由RNA编程的自我复制合成细胞
  • 批准号:
    BB/Y000196/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.78万
  • 项目类别:
    Research Grant
Japan_IPAP - Top-down meets bottom-up: Designer membrane-less organelles from condensation of synthetic RNA nanostructure
Japan_IPAP - 自上而下与自下而上相遇:通过合成 RNA 纳米结构的浓缩设计无膜细胞器
  • 批准号:
    BB/X012557/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.78万
  • 项目类别:
    Research Grant
A programmable, cell-agnostic DNA nano-technology platform for CRISPR gene editing
用于 CRISPR 基因编辑的可编程、与细胞无关的 DNA 纳米技术平台
  • 批准号:
    EP/V048058/1
  • 财政年份:
    2021
  • 资助金额:
    $ 25.78万
  • 项目类别:
    Research Grant

相似国自然基金

溶酶体膜蛋白LAMP2新突变Y228*促进心肌细胞糖代谢异常导致Danon病心肌病的机制研究
  • 批准号:
    82360048
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于二元重编程的归一化肿瘤疫苗在局部晚期三阴乳腺癌新辅助治疗中的作用与机制研究
  • 批准号:
    32371451
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
甜菊糖苷新位点糖基化的机制研究及其在低热量甜味剂结构创新中的应用
  • 批准号:
    32372277
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新骨架紫杉烷二萜baccataxane的化学合成、衍生化和降糖活性研究
  • 批准号:
    82373758
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
通过机器学习和多模式验证聚焦新靶点ENHO/Adropin在系统性硬化症中的作用和机制研究
  • 批准号:
    82371818
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

AMPQuest - Journeying to new horizons in treating drug-resistant infections.
AMPQuest - 迈向治疗耐药感染的新视野。
  • 批准号:
    BB/Y514019/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.78万
  • 项目类别:
    Research Grant
New Horizons in Quinonedimethide Chemistry
醌二甲基化学的新视野
  • 批准号:
    DP240100555
  • 财政年份:
    2024
  • 资助金额:
    $ 25.78万
  • 项目类别:
    Discovery Projects
Conference: New horizons in language science: large language models, language structure, and the neural basis of language
会议:语言科学的新视野:大语言模型、语言结构和语言的神经基础
  • 批准号:
    2418125
  • 财政年份:
    2024
  • 资助金额:
    $ 25.78万
  • 项目类别:
    Standard Grant
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
  • 批准号:
    2868548
  • 财政年份:
    2023
  • 资助金额:
    $ 25.78万
  • 项目类别:
    Studentship
New horizons in Electrostatic Force Microscopy
静电力显微镜的新视野
  • 批准号:
    EP/X018024/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.78万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了