Japan_IPAP - Top-down meets bottom-up: Designer membrane-less organelles from condensation of synthetic RNA nanostructure

Japan_IPAP - 自上而下与自下而上相遇:通过合成 RNA 纳米结构的浓缩设计无膜细胞器

基本信息

  • 批准号:
    BB/X012557/1
  • 负责人:
  • 金额:
    $ 19.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Eukaryotic cells are characterised by the presence of internal compartments, or organelles, that by separating or bringing together specific biomolecular components can optimise processes critical for the cells to survive. Many organelles, such as the nucleus, the mitochondria and the Golgi apparatus are enclosed by lipid membranes, that have long been considered as the only means through which cells can establish internal compartments. However, in recent years, a new class of organelles has been discovered, which are not bound by a membrane. These membrane-less organelles emerge thanks to the ability of certain proteins and RNA molecules to "separate" from the rest of the cytoplasm, forming droplets due to the same physical process that causes oil droplets to separate from water. Like membrane-bound organelles, these biomolecular droplets or "condensates" play important biological roles, regulating for example, the assembly of enzymes and natural degradation of RNA.Synthetic biology aims to re-program cells to enhance their functionalities, making them useful as therapeutic or sensing agents, and as "cell factories" for the optimised production of pharmaceutical compounds and biomaterials. Cell reprogramming is most often conducted through genetic engineering: re-writing the cell's DNA to change its behaviour.Because of the importance that compartmentalisation plays in regulating cellular functionalities, the possibility of controlling the formation and composition of organelles would be very valuable in synthetic biology, complementing the tools of genetic engineering.Thanks to an interdisciplinary research team from the UK and Japan, in this project, we will develop strategies to engineer the formation of non-native membrane-less organelles in cells. The new organelles will assemble from of RNA molecules that fold to form nanostructures with prescribed shape and mutual interactions. We will be able to program the RNA-organelles to capture other biomolecules, such as messenger RNA, enzymes, and other proteins, so to replicate the ability of natural organelles to spatially organise and regulate the cell's biochemical pathways. We will study the properties of the RNA organelles at first in simplified cell models: synthetic cells that mimic the properties of live cells. Later, we will move to induce the formation of the RNA organelles in live cells, specifically E. coli bacteria. Note that, as all prokaryotes, E. coli do not possess natural internal compartmentalisation, so we would be creating completely new structures within the cell!Our findings will give synthetic biologists a new tool to fine tune the behaviour of live cells, which we argue could be particularly useful for optimising bioprocessing and biosynthesis.
真核细胞的特征是存在内部区室或细胞器,通过分离或聚集特定的生物分子成分可以优化细胞生存的关键过程。许多细胞器,如细胞核、线粒体和高尔基体,都被脂质膜包围,长期以来,脂质膜一直被认为是细胞建立内部区室的唯一手段。然而,近年来,人们发现了一类新的细胞器,它们不受膜的束缚。这些无膜细胞器的出现得益于某些蛋白质和 RNA 分子与细胞质其余部分“分离”的能力,由于导致油滴与水分离的相同物理过程而形成液滴。与膜结合细胞器一样,这些生物分子液滴或“凝聚物”发挥着重要的生物学作用,例如调节酶的组装和 RNA 的自然降解。合成生物学旨在重新编程细胞以增强其功能,使它们可用作治疗药物或传感剂,以及作为优化生产药物化合物和生物材料的“细胞工厂”。细胞重编程通常通过基因工程进行:重写细胞的 DNA 以改变其行为。由于区室化在调节细胞功能中的重要性,控制细胞器的形成和组成的可能性在合成生物学中将非常有价值,补充基因工程工具。感谢来自英国和日本的跨学科研究团队,在这个项目中,我们将开发策略来工程化细胞中非天然无膜细胞器的形成。新的细胞器将由 RNA 分子组装而成,这些分子折叠形成具有指定形状和相互作用的纳米结构。我们将能够对RNA细胞器进行编程,以捕获其他生物分子,例如信使RNA、酶和其他蛋白质,从而复制天然细胞器在空间上组织和调节细胞生化途径的能力。我们将首先在简化的细胞模型中研究 RNA 细胞器的特性:模仿活细胞特性的合成细胞。稍后,我们将着手诱导活细胞(特别是大肠杆菌)中 RNA 细胞器的形成。请注意,与所有原核生物一样,大肠杆菌不具有自然的内部区室化,因此我们将在细胞内创建全新的结构!我们的发现将为合成生物学家提供一个新工具来微调活细胞的行为,我们认为对于优化生物加工和生物合成特别有用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lorenzo Di Michele其他文献

Lipid vesicle-based molecular robots
  • DOI:
    10.1039/d3lc00860f
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Zugui Peng;Shoji Iwabuchi;Kayano Izumi;Sotaro Takiguchi;Misa Yamaji;Shoko Fujita;Harune Suzuki;Fumika Kambara;Genki Fukasawa;Aileen Cooney;Lorenzo Di Michele;Yuval Elani;Tomoaki Matsuura;Ryuji Kawano
  • 通讯作者:
    Ryuji Kawano
Modulating membrane fusion through the design of fusogenic DNA circuits and bilayer composition
  • DOI:
    10.1039/d2sm00863g
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Miguel Paez-Perez;I. Alasdair Russell;Pietro Cicuta;Lorenzo Di Michele
  • 通讯作者:
    Lorenzo Di Michele
Fast, multicolour optical sectioning over extended fields of view by combining interferometric SIM with machine learning
通过将干涉 SIM 与机器学习相结合,在扩展视野上进行快速、多色光学切片
  • DOI:
    10.3389/fcvm.2021.645867
  • 发表时间:
    2023-10-31
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Edward N. Ward;Rebecca M. McClell;Jacob R. Lamb;Roger Rubio;Charles N Christensen;Bismoy Mazumder;Sofia Kapsiani;Luca Mascheroni;Lorenzo Di Michele;G. K. Schierle;Clemens Kaminski
  • 通讯作者:
    Clemens Kaminski
Amphiphilic DNA nanostructures for bottom-up synthetic biology
  • DOI:
    10.1039/d1cc04311k
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Roger Rubio-Sánchez;Giacomo Fabrini;Pietro Cicuta;Lorenzo Di Michele
  • 通讯作者:
    Lorenzo Di Michele
Interplay of the mechanical and structural properties of DNA nanostructures determines their electrostatic interactions with lipid membranes
  • DOI:
    10.1039/d2nr05368c
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Diana Morzy;Cem Tekin;Vincenzo Caroprese;Roger Rubio-Sánchez;Lorenzo Di Michele;Maartje M. C. Bastings
  • 通讯作者:
    Maartje M. C. Bastings

Lorenzo Di Michele的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lorenzo Di Michele', 18)}}的其他基金

2022BBSRC-NSF/BIO: Self-replicating synthetic cells programmed by RNA
2022BBSRC-NSF/BIO:由RNA编程的自我复制合成细胞
  • 批准号:
    BB/Y000196/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Research Grant
EPSRC New Horizons 2021: Engineering synthetic synapses between artificial and biological cells.
EPSRC New Horizo​​ns 2021:人工细胞和生物细胞之间的工程合成突触。
  • 批准号:
    EP/X018903/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Research Grant
A programmable, cell-agnostic DNA nano-technology platform for CRISPR gene editing
用于 CRISPR 基因编辑的可编程、与细胞无关的 DNA 纳米技术平台
  • 批准号:
    EP/V048058/1
  • 财政年份:
    2021
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Research Grant

相似国自然基金

复杂应力下沥青混合料Top-Down开裂性能的力学评价机制的研究
  • 批准号:
    52308428
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Top-Down方法可控制备PbS量子点及其光电性能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
外侧下丘脑-PAG腹外侧区top-down神经环路调控慢性痛的作用机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
考虑剪切损伤的排水沥青路面Top-down裂缝机理与评价方法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
锰基层状氧化物正极的‘Top-Down’设计合成及其Mn-O层、共嵌晶格水和阳离子(基团)协同助力碱金属电池研究
  • 批准号:
    21902038
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: FET: A Top-down Compilation Infrastructure for Optimization and Debugging in the Noisy Intermediate Scale Quantum (NISQ) era
职业:FET:用于噪声中级量子 (NISQ) 时代优化和调试的自上而下的编译基础设施
  • 批准号:
    2421059
  • 财政年份:
    2024
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Continuing Grant
Collaborative Research: modifiers of ocean acidification effects on top-down control in eelgrass habitat
合作研究:海洋酸化效应的调节剂对鳗草栖息地自上而下控制的影响
  • 批准号:
    2241906
  • 财政年份:
    2023
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Standard Grant
Characterizing top-down dimensions of appetite self-regulation among preschoolers
表征学龄前儿童食欲自我调节的自上而下的维度
  • 批准号:
    10663672
  • 财政年份:
    2023
  • 资助金额:
    $ 19.27万
  • 项目类别:
Bottom-up and top-down computational modeling approaches to study CMV retinitis
研究 CMV 视网膜炎的自下而上和自上而下的计算模型方法
  • 批准号:
    10748709
  • 财政年份:
    2023
  • 资助金额:
    $ 19.27万
  • 项目类别:
CAS: Oxidation from the Top Down and the Bottom Up by the OH Radical: Lifetimes and Fates of Important Ingredients of Pesticides, Pharmaceuticals, and Consumer Products
CAS: OH 自由基自上而下和自下而上的氧化:农药、药品和消费品重要成分的寿命和命运
  • 批准号:
    2303948
  • 财政年份:
    2023
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了