A programmable, cell-agnostic DNA nano-technology platform for CRISPR gene editing
用于 CRISPR 基因编辑的可编程、与细胞无关的 DNA 纳米技术平台
基本信息
- 批准号:EP/V048058/1
- 负责人:
- 金额:$ 25.69万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CRISPR-Cas9 gene editing has warranted its developers the 2020 Nobel Prize for Chemistry, in view of the massive impact that this technology is having on biological, biotechnological and medical research. In particular CRISPR gene editing is central to next generation cell-based therapies to treat cancer and other diseases, in which some of the patient's cells are extracted, genetically modified to fulfil specific functions, and then re-injected into the patient. This process is however time consuming and very costly, limiting the diffusion of these potentially life-saving therapies. One of the reasons behind the prohibitive costs is the low efficiency with which one can deliver to the cells the biological machinery required to perform CRISPR gene editing, both at scale and without excessive toxicity (leading to cell death).In this project, we will develop a novel and alternative approach to delivering CRISPR machinery to mammalian cells in vitro. Our approach will rely on specifically designed vectors, which we dub Editosomes. These are microscopic enclosures constructed from lipid membranes, similar to cell membranes, and containing large quantities of the CRISPR machinery.For Editosomes to deliver the machinery to the target cells the two would have to fuse. We will induce fusion by decorating both Editosomes and the target cells with artificial "fusogenic" nanomachines, that by binding to each other bring the cell and Editosome membranes to within a very short distance, ultimately making them merge. The fusogenic nanostructures will be constructed from synthetic DNA molecules, which are particularly suitable for engineering nanodevices in view of the very high selectivity and programmability of the base-pairing interactions.We envisage that Editosome technology will have a direct and profound impact on our ability to perform high-throughput, efficient, CRISPR gene editing in vivo, and thus on the accessibility and economic sustainability of the therapeutic technologies that rely on it.Additionally, we will clarify fundamental aspects of the (bio)physics underling lipid membrane stability, fusion, and the ability of DNA nanostructures to modulate them.
鉴于 CRISPR-Cas9 基因编辑技术对生物、生物技术和医学研究产生的巨大影响,其开发人员获得了 2020 年诺贝尔化学奖。特别是,CRISPR基因编辑是治疗癌症和其他疾病的下一代细胞疗法的核心,其中提取患者的一些细胞,进行基因改造以实现特定功能,然后重新注射到患者体内。然而,这个过程非常耗时且成本高昂,限制了这些可能挽救生命的疗法的传播。成本高昂的原因之一是,向细胞传递进行 CRISPR 基因编辑所需的生物机器的效率很低,既要大规模,又不会产生过多的毒性(导致细胞死亡)。在这个项目中,我们将开发一种新颖的替代方法,在体外将 CRISPR 机器传递给哺乳动物细胞。我们的方法将依赖于专门设计的载体,我们将其称为编辑体。这些是由脂质膜构建的微观外壳,类似于细胞膜,并且包含大量的 CRISPR 机器。为了将机器传递到目标细胞,编辑体必须将两者融合。我们将通过用人工“融合”纳米机器装饰编辑体和靶细胞来诱导融合,通过相互结合使细胞和编辑体膜达到非常短的距离,最终使它们融合。融合纳米结构将由合成 DNA 分子构建,鉴于碱基配对相互作用的极高选择性和可编程性,特别适合工程纳米器件。我们预计,Editosome 技术将对我们的能力产生直接而深远的影响。在体内进行高通量、高效的 CRISPR 基因编辑,从而提高依赖它的治疗技术的可及性和经济可持续性。此外,我们将阐明脂膜下的(生物)物理学的基本方面DNA 纳米结构的稳定性、融合性以及调节它们的能力。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modulating membrane fusion through the design of fusogenic DNA circuits and bilayer composition.
通过融合 DNA 电路和双层组成的设计来调节膜融合。
- DOI:http://dx.10.1039/d2sm00863g
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Paez
- 通讯作者:Paez
Sculpting DNA-based synthetic cells through phase separation and phase-targeted activity
通过相分离和相靶向活性来塑造基于 DNA 的合成细胞
- DOI:10.1101/2023.03.17.533162
- 发表时间:2023-03-21
- 期刊:
- 影响因子:0
- 作者:Layla Malouf;Diana A. Tanase;Giacomo Fabrini;Miguel Paez;Adrian Leathers;M. Booth;L. Di Michele
- 通讯作者:L. Di Michele
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lorenzo Di Michele其他文献
Modulating membrane fusion through the design of fusogenic DNA circuits and bilayer composition
- DOI:
10.1039/d2sm00863g - 发表时间:
2022-08 - 期刊:
- 影响因子:3.4
- 作者:
Miguel Paez-Perez;I. Alasdair Russell;Pietro Cicuta;Lorenzo Di Michele - 通讯作者:
Lorenzo Di Michele
Lipid vesicle-based molecular robots
- DOI:
10.1039/d3lc00860f - 发表时间:
2024-01 - 期刊:
- 影响因子:6.1
- 作者:
Zugui Peng;Shoji Iwabuchi;Kayano Izumi;Sotaro Takiguchi;Misa Yamaji;Shoko Fujita;Harune Suzuki;Fumika Kambara;Genki Fukasawa;Aileen Cooney;Lorenzo Di Michele;Yuval Elani;Tomoaki Matsuura;Ryuji Kawano - 通讯作者:
Ryuji Kawano
Fast, multicolour optical sectioning over extended fields of view by combining interferometric SIM with machine learning
通过将干涉 SIM 与机器学习相结合,在扩展视野上进行快速、多色光学切片
- DOI:
10.3389/fcvm.2021.645867 - 发表时间:
2023-10-31 - 期刊:
- 影响因子:3.6
- 作者:
Edward N. Ward;Rebecca M. McClell;Jacob R. Lamb;Roger Rubio;Charles N Christensen;Bismoy Mazumder;Sofia Kapsiani;Luca Mascheroni;Lorenzo Di Michele;G. K. Schierle;Clemens Kaminski - 通讯作者:
Clemens Kaminski
Amphiphilic DNA nanostructures for bottom-up synthetic biology
- DOI:
10.1039/d1cc04311k - 发表时间:
2021-10 - 期刊:
- 影响因子:4.9
- 作者:
Roger Rubio-Sánchez;Giacomo Fabrini;Pietro Cicuta;Lorenzo Di Michele - 通讯作者:
Lorenzo Di Michele
DNA-assisted selective electrofusion (DASE) ofEscherichia coliand giant lipid vesicles
- DOI:
10.1039/d2nr03105a - 发表时间:
2022-08 - 期刊:
- 影响因子:6.7
- 作者:
Sho Takamori;Pietro Cicuta;Shoji Takeuchi;Lorenzo Di Michele - 通讯作者:
Lorenzo Di Michele
Lorenzo Di Michele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lorenzo Di Michele', 18)}}的其他基金
2022BBSRC-NSF/BIO: Self-replicating synthetic cells programmed by RNA
2022BBSRC-NSF/BIO:由RNA编程的自我复制合成细胞
- 批准号:
BB/Y000196/1 - 财政年份:2024
- 资助金额:
$ 25.69万 - 项目类别:
Research Grant
EPSRC New Horizons 2021: Engineering synthetic synapses between artificial and biological cells.
EPSRC New Horizons 2021:人工细胞和生物细胞之间的工程合成突触。
- 批准号:
EP/X018903/1 - 财政年份:2023
- 资助金额:
$ 25.69万 - 项目类别:
Research Grant
Japan_IPAP - Top-down meets bottom-up: Designer membrane-less organelles from condensation of synthetic RNA nanostructure
Japan_IPAP - 自上而下与自下而上相遇:通过合成 RNA 纳米结构的浓缩设计无膜细胞器
- 批准号:
BB/X012557/1 - 财政年份:2023
- 资助金额:
$ 25.69万 - 项目类别:
Research Grant
相似国自然基金
IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
- 批准号:82301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
- 批准号:82373325
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
- 批准号:82301257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
聚谷氨酸基润滑微界面辅助制备脱细胞软骨微粒基生物墨水用于软骨再生
- 批准号:52373146
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肿瘤细胞外囊泡ETV4活化间质微环境CAFs促进胰腺癌侵袭转移的分子机理及精准诊疗标志物研究
- 批准号:82303419
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 25.69万 - 项目类别:
Standard Grant
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
- 批准号:
2319913 - 财政年份:2024
- 资助金额:
$ 25.69万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 25.69万 - 项目类别:
Standard Grant
Uncovering the Underlying Biophysical Mechanisms of Directed Cell Migration
揭示定向细胞迁移的潜在生物物理机制
- 批准号:
2345411 - 财政年份:2024
- 资助金额:
$ 25.69万 - 项目类别:
Standard Grant
Collaborative Research: DMS/NIGMS 1: Simulating cell migration with a multi-scale 3D model fed by intracellular tension sensing measurements
合作研究:DMS/NIGMS 1:使用由细胞内张力传感测量提供的多尺度 3D 模型模拟细胞迁移
- 批准号:
2347956 - 财政年份:2024
- 资助金额:
$ 25.69万 - 项目类别:
Standard Grant