A Smart Automated TEM Facility for Large Scale Analysis of Atomic Structure and Chemistry

用于大规模原子结构和化学分析的智能自动化 TEM 设备

基本信息

  • 批准号:
    EP/X041204/1
  • 负责人:
  • 金额:
    $ 746.34万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Advanced materials lie at the heart of a huge number of key modern technologies, from aerospace and automotive industries, to semiconductors through to surgical implants. The transmission electron microscope (TEM) is a key enabling technology for advanced material research because it offers two important pieces of atomic information: firstly the location of atoms can be determined from studies of elastic scattering of electrons by the sample, and secondly the chemical composition of atomic sites within the materials structure can be recovered from spectroscopic studies of the inelastic transfer of energy to the sample (either from direct energy loss or by the detection of characteristic X-rays). These two pieces of information underpin a huge research area exploring the relationship between materials microscopic structure and the macroscopic properties it exhibits. With the drive towards nanotechnologies and quantum devices the ability to discover the most precise understanding of individual atoms is an essential capability for facilities supporting research of advanced materials.The aim of the project is to develop, for the first time, an analytical TEM that not only offers cutting edge spectroscopy performance but which also is designed with artificial intelligence and automated workflows at its core. The first goal will be achieved through the incorporation of the latest generation of X-ray detectors and spectrometers to provide order of magnitude improvements in chemical sensitivity and precision. This capability is essential for the move to studying devices as small as a single atomic defect as well as for efficient analysis of large areas at atomic resolution. To achieve artificial intelligence (AI)-assisted experiments the project will tackle a number of technical challenges:i. Computer control of the TEM will be developed, allowing the computer to automatically adjust the sample stage and beam to address specific regions of interest and perform auto-tuning the experimental parameters to achieve detailed high resolution imaging and diffraction based analysis of nanometric regions without the need for continuous operator interaction.ii. The mechanism to identify regions of interest will utilise the full range of machine learning (ML) approaches to segment lower resolution data, which might come from fast large-area scanning in the TEM or be the result of ex-situ analysis by optical imaging, scanning probe microscopies, scanning electron microscopy or optical approaches to name but a few. iii AI training will allow the microscope control computer to build functional relationships between experimental results in the same way a human operator does, allowing faster and more systematic identification of novel features.Our proposed new smart automated TEM (AutomaTEM) offers the opportunity to gain at least an order of magnitude increase in the volume of data that is readily accessible through automated workflow analysis. Features of interest will be determined either through user-defined parameters or through the AI identification of significant features in the collective data. This will allow meaningful statistics to be gathered about the size, shape, atomic structure, composition, electronic behaviour of potentially hundreds or thousands of regions in a given sample. This in turn will enable more complete understanding of nanostructure heterogeneity and structure-property relationships in materials.
先进材料是大量关键现代技术的核心,从航空航天和汽车工业到半导体再到外科植入物。透射电子显微镜 (TEM) 是先进材料研究的一项关键技术,因为它提供了两项重要的原子信息:首先,可以通过研究样品的电子弹性散射来确定原子的位置,其次可以确定化学成分材料结构内的原子位点可以通过对样品能量非弹性转移的光谱研究(通过直接能量损失或通过特征 X 射线的检测)来恢复。这两条信息支撑了一个巨大的研究领域,探索材料的微观结构与其所表现出的宏观特性之间的关系。随着纳米技术和量子器件的发展,对单个原子进行最精确理解的能力是支持先进材料研究的设施的一项基本能力。该项目的目的是首次开发一种分析 TEM,不仅提供尖端的光谱性能,而且其设计也以人工智能和自动化工作流程为核心。第一个目标将通过结合最新一代的 X 射线探测器和光谱仪来实现,以实现化学灵敏度和精度的数量级改进。这种能力对于研究小至单个原子缺陷的设备以及以原子分辨率对大面积进行有效分析至关重要。为了实现人工智能(AI)辅助实验,该项目将解决许多技术挑战:i。将开发 TEM 的计算机控制,允许计算机自动调整样品台和光束以处理特定的感兴趣区域,并自动调整实验参数,以实现详细的高分辨率成像和基于衍射的纳米区域分析,而无需用于持续的操作员交互。识别感兴趣区域的机制将利用全方位的机器学习 (ML) 方法来分割较低分辨率的数据,这些数据可能来自 TEM 中的快速大面积扫描,也可能是光学成像异位分析的结果,扫描探针显微镜、扫描电子显微镜或光学方法仅举几例。 iii 人工智能训练将使显微镜控制计算机能够像人类操作员一样在实验结果之间建立函数关系,从而更快、更系统地识别新特征。我们提出的新型智能自动化 TEM (AutomaTEM) 提供了获得以下结果的机会:通过自动化工作流程分析可以轻松访问的数据量至少增加一个数量级。感兴趣的特征将通过用户定义的参数或通过人工智能识别集体数据中的重要特征来确定。这将允许收集有关给定样本中潜在的数百或数千个区域的大小、形状、原子结构、成分、电子行为的有意义的统计数据。这反过来又将使人们能够更全面地理解材料中的纳米结构异质性和结构-性能关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Haigh其他文献

Sarah Haigh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah Haigh', 18)}}的其他基金

Atomic imaging of dynamic behaviour at solid-liquid interfaces
固液界面动态行为的原子成像
  • 批准号:
    EP/Y024303/1
  • 财政年份:
    2024
  • 资助金额:
    $ 746.34万
  • 项目类别:
    Research Grant
Correlative Mapping of Crystal Orientation and Chemistry at the Nanoscale
纳米尺度晶体取向和化学的相关映射
  • 批准号:
    EP/S021531/1
  • 财政年份:
    2019
  • 资助金额:
    $ 746.34万
  • 项目类别:
    Research Grant
Quasi-ambient bonding to enable cost-effective high temperature Pb-free solder interconnects
准环境键合可实现经济高效的高温无铅焊料互连
  • 批准号:
    EP/R031711/1
  • 财政年份:
    2018
  • 资助金额:
    $ 746.34万
  • 项目类别:
    Research Grant

相似国自然基金

热化学非平衡下高马赫数超燃冲压发动机热力分析及其流道自动化设计
  • 批准号:
    52306006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
工业自动化与创新的产业外溢:理论与实证
  • 批准号:
    72302245
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向典型sponge类哈希函数的比特分析驱动的中间相遇自动化攻击研究
  • 批准号:
    62302250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于单浆细胞筛选新技术的自动化抗体发现平台构建及工作机制研究
  • 批准号:
    32301266
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
码头自动化中的图论和组合优化问题
  • 批准号:
    12331014
  • 批准年份:
    2023
  • 资助金额:
    194 万元
  • 项目类别:
    重点项目

相似海外基金

CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
  • 批准号:
    2348147
  • 财政年份:
    2024
  • 资助金额:
    $ 746.34万
  • 项目类别:
    Standard Grant
ARC Training Centre for Automated Vehicles in Rural and Remote Regions
ARC农村和偏远地区自动驾驶汽车培训中心
  • 批准号:
    IC230100001
  • 财政年份:
    2024
  • 资助金额:
    $ 746.34万
  • 项目类别:
    Industrial Transformation Training Centres
Automated Formal Verification of Quantum Protocols for the Quantum Era
量子时代量子协议的自动形式验证
  • 批准号:
    24K20757
  • 财政年份:
    2024
  • 资助金额:
    $ 746.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
  • 批准号:
    EP/Y015878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 746.34万
  • 项目类别:
    Fellowship
Screen4SpLDs - Development of an Automated Pre-Screening Tool for Specific Learning Disabilities in Children.
Screen4SpLDs - 开发针对儿童特定学习障碍的自动预筛查工具。
  • 批准号:
    EP/Y002121/1
  • 财政年份:
    2024
  • 资助金额:
    $ 746.34万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了