VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
基本信息
- 批准号:EP/Y015878/1
- 负责人:
- 金额:$ 25.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Automated Vehicles (AVs) have great potential in revolutionising the existing transportation system into an intelligent ecosystem that can enhance road safety, service accessibility and environmental sustainability. However, this potential is hampered by the inability of the current learning-based visual perception (VP) system that is trained from limited labelled data and thus fails to understand the complex dynamic driving scene. To deal with this problem, VIPAuto aims to develop a series of ground-breaking technologies for creating a generalized VP system and bridging the gap between the limited training data and the endless variations in the real scene. To this end, two significant challenges will be addressed: 1) boosting the scene understanding accuracy of the VP system under adverse weather conditions and 2) enabling the VP system to recognize and incrementally learn anomalous objects. To tackle the first challenge, a self-supervised domain adaptation strategy will be developed to enable the VP model to learn from unlabelled data by transferring knowledge from the clear weather domain to the adverse weather domain, which is empowered by innovatively established inter- and intra-domain common knowledge. To tackle the second challenge, a few-shot incremental learning strategy will be created to enable the VP model to learn unknown objects by designing contrastive learning to repel unknown objects from known classes and creating an advanced cognitive theory-based representation to promote learning capacity from a few samples. The proposed solutions will be integrated into an optimized VP system and evaluated under the complex dynamic driving scene. VIPAuto will provide theoretical foundations and practical techniques for incrementally adaptive VP technologies, thereby promoting the robustness of scene understanding in the real world to support the decision-making of AVs, and contributing to the EU's long-term goal of "Vision Zero" (zero road fatalities) by 2050.
自动化车辆(AV)在将现有运输系统彻底改变为智能生态系统中具有巨大潜力,该系统可以增强道路安全,服务可及性和环境可持续性。但是,这种潜力受到当前基于学习的视觉感知(VP)系统的无法从有限的标记数据训练,因此无法理解复杂的动态驾驶场景。为了解决这个问题,Vipauto旨在开发一系列突破性的技术,以创建广义VP系统,并弥合有限的培训数据与真实场景中无数变化之间的差距。为此,将要解决两个重大挑战:1)在不利天气条件下增强VP系统的场景的准确性,以及2)使VP系统能够识别并逐步学习异常对象。为了应对第一个挑战,将制定一种自我监管的域适应策略,以使VP模型通过将知识从清晰的天气领域转移到不利的天气领域,从未标记的数据中学习,该知识受到创新建立的Interave Interain和Interain Interain Interain和Dosebain的常识。为了应对第二项挑战,将创建一些射击的增量学习策略,以使副总裁模型通过设计对比度学习来学习未知对象,从而驱除已知类别的未知对象并创建基于认知的高级理论表示,以从几个样本中促进学习能力。提出的解决方案将集成到优化的VP系统中,并在复杂的动态驾驶场景下进行评估。 Vipauto将为逐步自适应副总裁技术提供理论基础和实用技术,从而促进现实世界中场景理解的鲁棒性,以支持AVS的决策,并在2050年为欧盟的“ Vision Zero”(零道路致命)的长期目标做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geyong Min其他文献
Performance analysis of an integrated scheduling scheme in the presence of bursty MMPP traffic
存在突发 MMPP 流量时集成调度方案的性能分析
- DOI:
10.1016/j.jss.2010.08.027 - 发表时间:
2011 - 期刊:
- 影响因子:3.5
- 作者:
Lei Liu;Xiaolong Jin;Geyong Min - 通讯作者:
Geyong Min
On the Study of Sustainability and Outage of SWIPT-Enabled Wireless Communications
基于SWIPT的无线通信的可持续性和中断研究
- DOI:
10.1109/jstsp.2021.3092136 - 发表时间:
2021-06 - 期刊:
- 影响因子:7.5
- 作者:
Yang Luo;Chunbo Luo;Geyong Min;Gerard Parr;Sally McClean - 通讯作者:
Sally McClean
Overcoming Occlusions: Perception Task-Oriented Information Sharing in Connected and Autonomous Vehicles
克服遮挡:联网和自动驾驶车辆中面向感知任务的信息共享
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:9.3
- 作者:
Zhu Xiao;Jinmei Shu;Hongbo Jiang;Geyong Min;Hongyang Chen;Zhu Han - 通讯作者:
Zhu Han
A Light-Weight Statistical Latency Measurement Platform at Scale
轻量级大规模统计延迟测量平台
- DOI:
10.1109/tii.2021.3098796 - 发表时间:
2021-07 - 期刊:
- 影响因子:12.3
- 作者:
Xu Zhang;Geyong Min;Qilin Fan;Hao Yin;Dapeng Wu;Zhan Ma - 通讯作者:
Zhan Ma
Cooperative Edge Caching Based on Temporal Convolutional Networks
基于时间卷积网络的协作边缘缓存
- DOI:
10.1109/tpds.2021.3135257 - 发表时间:
2021 - 期刊:
- 影响因子:5.3
- 作者:
Xu Zhang;Zhengnan Qi;Geyong Min;Wang Miao;Qilin Fan;Zhan Ma - 通讯作者:
Zhan Ma
Geyong Min的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geyong Min', 18)}}的其他基金
RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems
RITA:AIoT 系统边缘计算中可靠、高效的任务管理
- 批准号:
EP/Y015886/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Fellowship
KEEN - Knowledge-driven Explainable Misinformation Detection for Trustworthy Computational Social Systems
KEEN - 知识驱动的可解释错误信息检测,用于可信赖的计算社会系统
- 批准号:
EP/Y015894/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Fellowship
ASCENT: Autonomous Vehicular Edge Computing and Networking for Intelligent Transportation
ASCENT:智能交通的自主车辆边缘计算和网络
- 批准号:
EP/X038866/1 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
Proposal for Support of the Keynote Speakers for the 10th IEEE International Conference on Computer and Information Technology (CIT-2010)
支持第十届 IEEE 计算机与信息技术国际会议 (CIT-2010) 主讲嘉宾的提案
- 批准号:
EP/I011676/1 - 财政年份:2010
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
相似国自然基金
强壮前沟藻共生细菌降解膦酸酯产生促藻效应的分子机制
- 批准号:42306167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高效率强壮消息鉴别码的分析与设计
- 批准号:61202422
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
半定松弛与非凸二次约束二次规划研究
- 批准号:11271243
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
基于复合编码脉冲串的水下主动隐蔽性探测新方法研究
- 批准号:61271414
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
民航客运网络收益管理若干问题的研究
- 批准号:60776817
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:联合基金项目
相似海外基金
CAREER: Risk-Based Methods for Robust, Adaptive, and Equitable Flood Risk Management in a Changing Climate
职业:在气候变化中实现稳健、适应性和公平的洪水风险管理的基于风险的方法
- 批准号:
2238060 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Standard Grant
CAREER: Enabling Robust and Adaptive Architectures through a Decoupled Security-Centric Hardware/Software Stack
职业:通过解耦的以安全为中心的硬件/软件堆栈实现鲁棒性和自适应架构
- 批准号:
2238548 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Continuing Grant
Commensal bacteria as vehicles for robust mucosal vaccination against lung pathogens
共生细菌作为针对肺部病原体的强力粘膜疫苗接种的载体
- 批准号:
10749817 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Exploiting Geometries of Learning for Fast, Adaptive and Robust AI
利用学习几何实现快速、自适应和鲁棒的人工智能
- 批准号:
DP230101176 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Discovery Projects
Targeting innate immunity for induction of robust renal allograft tolerance
针对先天免疫诱导强大的肾同种异体移植耐受
- 批准号:
10622050 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别: