Correlative Mapping of Crystal Orientation and Chemistry at the Nanoscale

纳米尺度晶体取向和化学的相关映射

基本信息

  • 批准号:
    EP/S021531/1
  • 负责人:
  • 金额:
    $ 176.59万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Advanced materials lie at the heart of a huge number of key modern technologies, from aerospace and automotive industries, to semiconductors through to surgical implants. Central to the study of materials is the ability to analyse the structure of materials from the atomic scale, up through the microscopic structure and on to the size of individual components and devices. Only by understanding this hierarchy of structure can the properties and performance of devices and components be optimised. Transmission electron microscopy (TEM) is a key technique for characterising the local structure and chemistry of a wide range of materials. It is possible to gain information about the arrangement of atoms through imaging and electron diffraction patterns, and also to study composition via complementary spectroscopic measurements. One of the greatest strengths of the TEM is the ability to study tiny volumes of material, and hence to uncover information about the local defects and interfaces which often control the macroscopic properties of modern devices and materials.In this proposal we aim to install a state-of-the-art TEM with a dedicated electron diffraction camera that enable ultra-fast and large area analysis of the crystal structure, orientation and strain in engineering materials, alloys, ceramics and coatings. Furthermore, the high sensitivity of the new detector will also allow the same range of experiments using low electron doses. Excitingly this will open up new opportunities to study the atomic arrangement and microstructure of materials that are traditionally not suited to electron microscopy methods. These include organic materials (such as polymers, composites and pharmaceuticals) and also the variety of novel hybrid organic-inorganic materials that are showing great potential for technologies such as solar cells, gas storage and targeted catalysis. This new advance is particularly important as such organic and hybrid materials are difficult to characterise using traditional X-ray diffraction methods and the microstructure of ordered and disordered domains, defects and interfaces is often poorly understood for these materials. Only by understanding such structural complexity can we hope to control and harness their amazing breadth of properties.Combined with this diffraction capability will be high efficiency X-ray spectroscopy compositional analysis allowing the simultaneous analysis of the local atomic structure and chemistry of samples. Such correlative experiments will allow a better understanding of the macroscopic behaviour of materials and device, for example understanding how trace impurities affects the way cracks extend through barrier coatings or the structure changes that occur when hybrid framework materials absorb gas molecules. This will include the incorporation of advanced data science methods (often referred to as big-data approaches) to help process and understand the huge quantities of data that such a system can generate. In this way it should be possible to unlock secrets of material structure that would be impossible to ascertain by the isolated study of either crystal structure or composition.This new analytical power will be used in conjunction with a range of in-situ experimental methods that will allow materials and devices to be subjected to conditions such as temperature, fields, stress or chemical attack during the studies. By mimicking realistic operating conditions the true behaviour of materials can be explored and optimised for the benefit of all.
先进材料是大量关键现代技术的核心,从航空航天和汽车工业到半导体再到外科植入物。材料研究的核心是能够从原子尺度分析材料结构,直至微观结构直至单个组件和设备的尺寸。只有了解这种结构层次结构,才能优化设备和组件的属性和性能。透射电子显微镜 (TEM) 是表征多种材料的局部结构和化学性质的关键技术。可以通过成像和电子衍射图案获得有关原子排列的信息,也可以通过互补光谱测量来研究成分。 TEM 的最大优势之一是能够研究微小体积的材料,从而揭示有关局部缺陷和界面的信息,这些信息通常控制现代设备和材料的宏观特性。在本提案中,我们的目标是建立一个状态配有专用电子衍射相机的最先进的 TEM,可对工程材料、合金、陶瓷和涂层中的晶体结构、取向和应变进行超快速和大面积分析。此外,新探测器的高灵敏度也将允许使用低电子剂量进行相同范围的实验。令人兴奋的是,这将为研究传统上不适合电子显微镜方法的材料的原子排列和微观结构开辟新的机会。其中包括有机材料(如聚合物、复合材料和药物)以及各种新型有机-无机杂化材料,这些材料在太阳能电池、气体储存和靶向催化等技术方面显示出巨大潜力。这一新进展尤为重要,因为此类有机和杂化材料很难使用传统的 X 射线衍射方法进行表征,而且人们对这些材料的有序和无序域、缺陷和界面的微观结构通常了解甚少。只有了解这种结构的复杂性,我们才有希望控制和利用它们惊人的广泛性质。与这种衍射能力相结合,将进行高效的 X 射线光谱成分分析,从而可以同时分析样品的局部原子结构和化学成分。这样的相关实验将有助于更好地理解材料和器件的宏观行为,例如了解痕量杂质如何影响裂纹延伸穿过阻挡涂层的方式或混合框架材料吸收气体分子时发生的结构变化。这将包括结合先进的数据科学方法(通常称为大数据方法)来帮助处理和理解此类系统可以生成的大量数据。通过这种方式,应该有可能解开材料结构的秘密,这是不可能通过晶体结构或成分的孤立研究来确定的。这种新的分析能力将与一系列现场实验方法结合使用,这些方法将允许材料和设备在研究过程中受到温度、磁场、应力或化学侵蚀等条件的影响。通过模仿真实的操作条件,可以探索和优化材料的真实行为,以造福所有人。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthesis of molybdenum-doped rhenium disulfide alloy using aerosol-assisted chemical vapour deposition
  • DOI:
    10.1016/j.mssp.2021.105718
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    N. Al-Dulaimi;M. Al-Shakban;E. Lewis;Paul D. McNaughter;F. Alam;S. Haigh;David J. Lewis
  • 通讯作者:
    N. Al-Dulaimi;M. Al-Shakban;E. Lewis;Paul D. McNaughter;F. Alam;S. Haigh;David J. Lewis
Enhancing Hydrogen Production from the Photoreforming of Lignin.
提高木质素光重整的氢产量。
  • DOI:
    10.1002/cplu.202300411
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Aljohani M
  • 通讯作者:
    Aljohani M
A High-Resolution Versatile Focused Ion Implantation Platform for Nanoscale Engineering
用于纳米工程的高分辨率多功能聚焦离子注入平台
Phase stability of V- based multi-principal element alloys
V基多主元合金的相稳定性
Directed Evolution of an Efficient and Thermostable PET Depolymerase
  • DOI:
    10.26434/chemrxiv-2021-mcjh6
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bell, E.;Smithson, R.;Day, P.
  • 通讯作者:
    Day, P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Haigh其他文献

Sarah Haigh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah Haigh', 18)}}的其他基金

Atomic imaging of dynamic behaviour at solid-liquid interfaces
固液界面动态行为的原子成像
  • 批准号:
    EP/Y024303/1
  • 财政年份:
    2024
  • 资助金额:
    $ 176.59万
  • 项目类别:
    Research Grant
A Smart Automated TEM Facility for Large Scale Analysis of Atomic Structure and Chemistry
用于大规模原子结构和化学分析的智能自动化 TEM 设备
  • 批准号:
    EP/X041204/1
  • 财政年份:
    2023
  • 资助金额:
    $ 176.59万
  • 项目类别:
    Research Grant
Quasi-ambient bonding to enable cost-effective high temperature Pb-free solder interconnects
准环境键合可实现经济高效的高温无铅焊料互连
  • 批准号:
    EP/R031711/1
  • 财政年份:
    2018
  • 资助金额:
    $ 176.59万
  • 项目类别:
    Research Grant

相似国自然基金

基于DKI和Gd-EOB-DTPA增强T1-mapping评估化疗联合ALPPS术后肝脏再生能力的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于LA-ICPMS Mapping技术的含普通铅矿物U-Pb定年方法研发
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    58 万元
  • 项目类别:
面向主动欺骗防御的网络空间测绘对抗技术研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Variation in tumor-associated immune profiles and colorectal cancer outcomes
肿瘤相关免疫特征和结直肠癌结果的变化
  • 批准号:
    10684182
  • 财政年份:
    2021
  • 资助金额:
    $ 176.59万
  • 项目类别:
Variation in tumor-associated immune profiles and colorectal cancer outcomes
肿瘤相关免疫特征和结直肠癌结果的变化
  • 批准号:
    10306076
  • 财政年份:
    2021
  • 资助金额:
    $ 176.59万
  • 项目类别:
ShEEP Request for a high speed fluorescent slide scanning system
ShEEP 请求高速荧光载玻片扫描系统
  • 批准号:
    9906591
  • 财政年份:
    2019
  • 资助金额:
    $ 176.59万
  • 项目类别:
Primary Particle Imaging of Active Pharmaceutical Ingredient in Formulations by Raman Crystal Orientation Mapping
通过拉曼晶体取向映射对制剂中的活性药物成分进行初级粒子成像
  • 批准号:
    16K08213
  • 财政年份:
    2016
  • 资助金额:
    $ 176.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A next-generation spatial light modulator for mapping of neural networks
用于神经网络映射的下一代空间光调制器
  • 批准号:
    9360115
  • 财政年份:
    2015
  • 资助金额:
    $ 176.59万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了