Vertical GaN-on-Si membrane power transistors: Efficient power electronics for mass-market applications (VertiGaN)`

垂直硅基氮化镓薄膜功率晶体管:面向大众市场应用的高效电力电子器件 (VertiGaN)`

基本信息

  • 批准号:
    EP/X014924/1
  • 负责人:
  • 金额:
    $ 41.89万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

This project aims to realize transformative vertical gallium nitride-on-silicon (GaN-on-Si) transistors with breakdown voltage in excess of 1200 V. Power electronics is essential in applications including power distribution and transportation, with inefficiency of power electronic systems estimated to account for 20% of global carbon emissions. Furthermore, emerging low-carbon technologies, including electric vehicles and renewable energy generation, require power electronic devices with significant improvements over existing Si based solutions. GaN is a wide bandgap semiconductor alternative to Si, with superior power electronic material properties. Commercially-available lateral GaN transistors show good power performance, but are generally unsuitable for applications >1000 V due to high on resistance and large chip area. Vertical GaN transistors (where current flows into the plane of the chip, rather than along the surface) offer a step-increase in efficiency and power density over Si-based devices currently dominant in power electronics at voltages exceeding 1000 V. Large-scale commercialisation of vertical GaN devices is currently inhibited by the requirement for expensive and unsustainable GaN bulk substrates. Transfer to sustainable Si substrates as proposed here, with a cost reduction of >1000x, requires management of associated material defects, to be achieved in this work through of implementation of novel device structures and optimisation of material growth processes. Demonstration of vertical GaN on Si transistors with breakdown voltage of >1200 V (i.e. voltage at which device failure occurs), improved from <600 V in previous attempts, will enable exploitation of the outstanding GaN material properties in emerging mass market applications at >1000 V, unlocking new applications and enabling reduced carbon emissions in next-generation power electronic systems including electric vehicles and power distribution. Breakdown voltage in vertical GaN-on-Si transistors will be increased through improvement of material quality in the active device drift region. The novel structure will use an epitaxially-embedded n+GaN drain contact layer to facilitate a drain-recessed membrane device architecture, eliminating low-quality material from the active device region. In parallel, optimisation of epitaxial growth techniques will produce GaN-on-Si material with increased total thickness and a reduction in both dislocation density and background impurity levels. Drain-recessed GaN-on-Si membrane structures will then be integrated with finFET device topologies, shown to withstand operation voltages >1200 V in GaN-on-GaN, resulting in transistors with enhanced off-state blocking and on-state electron transport characteristics. The development workplan, in close collaboration and with strong support by industry, will enable both a thorough exploration of the underlying physics determining vertical breakdown in GaN-on-Si and improvements in device performance toward that required for large-scale commercialisation. Comprehensive failure analysis via reliability/stability testing and multiphysics modelling will provide further understanding of the GaN-on-Si material system and commercial potential.Technology demonstrators will be optimally positioned for integration with next-generation manufacturing chains and testing systems, ensuing maximum commercial impact. This will be achieved through regular consultation with the Project Steering Committee, consisting of UK-based manufacturers of power electronic materials, devices and systems, as well as academics and a prominent UK government policy influencer. The use of a Design Kit to promote the benefits of the technology to system designers and manufacturers will ensure maximum uptake and identification of additional application areas, toward achieving wide-scale use of GaN devices and an associated reduction in carbon emissions from inefficiency of power electronics.
该项目旨在实现击穿电压超过 1200 V 的变革性垂直硅基氮化镓 (GaN-on-Si) 晶体管。电力电子技术在配电和运输等应用中至关重要,预计电力电子系统的低效率将导致占全球碳排放量的20%。此外,新兴的低碳技术,包括电动汽车和可再生能源发电,需要电力电子设备在现有硅基解决方案的基础上进行重大改进。 GaN是Si的宽带隙半导体替代品,具有优越的电力电子材料特性。商用横向 GaN 晶体管显示出良好的功率性能,但由于导通电阻高和芯片面积大,通常不适合 >1000 V 的应用。垂直 GaN 晶体管(电流流入芯片平面,而不是沿着表面)与目前在电压超过 1000 V 的电力电子领域占主导地位的硅基器件相比,效率和功率密度大幅提高。 大规模商业化目前,垂直 GaN 器件的发展受到对昂贵且不可持续的 GaN 体衬底的需求的抑制。这里提出的转移到可持续硅衬底,成本降低>1000倍,需要管理相关的材料缺陷,在这项工作中通过实施新颖的器件结构和优化材料生长工艺来实现。垂直硅基氮化镓晶体管的击穿电压>1200V(即器件发生故障时的电压),从之前的尝试中的<600V有所提高,将能够在>1000V的新兴大众市场应用中利用出色的GaN材料特性V,解锁新应用并减少下一代电力电子系统(包括电动汽车和配电)的碳排放。通过改善有源器件漂移区的材料质量,可以提高垂直硅基氮化镓晶体管的击穿电压。该新颖结构将使用外延嵌入的 n+GaN 漏极接触层来促进漏极凹入式薄膜器件架构,从而消除有源器件区域的低质量材料。与此同时,外延生长技术的优化将生产出总厚度增加、位错密度和背景杂质水平降低的硅基氮化镓材料。然后,漏极凹进式 GaN-on-Si 膜结构将与 finFET 器件拓扑集成,显示 GaN-on-GaN 可以承受 >1200 V 的工作电压,从而使晶体管具有增强的断态阻断和导通态电子传输特性。该开发工作计划在业界的密切合作和大力支持下,将能够对决定硅基氮化镓垂直击穿的基础物理进行彻底探索,并提高器件性能,以达到大规模商业化所需的性能。通过可靠性/稳定性测试和多物理场建模进行的全面故障分析将有助于进一步了解硅基氮化镓材料系统和商业潜力。技术演示器将处于最佳位置,可与下一代制造链和测试系统集成,从而实现最大的商业影响。这将通过与项目指导委员会定期协商来实现,该委员会由英国电力电子材料、设备和系统制造商以及学者和英国政府政策影响者组成。使用设计套件向系统设计人员和制造商宣传该技术的优势,将确保最大限度地吸收和识别其他应用领域,从而实现 GaN 器件的广泛使用,并减少因电力电子效率低下而产生的碳排放。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Smith其他文献

Gendered brokerage and firm performance – An interlock analysis of the UK
性别经纪与公司业绩——英国的连锁分析
A Sparse Probabilistic Model of User Preference Data
用户偏好数据的稀疏概率模型
A smart-gentry based software system for secret program execution
一种基于智能绅士的秘密程序执行软件系统
Attitudes towards Client-Side Scanning for CSAM, Terrorism, Drug Trafficking, Drug Use and Tax Evasion in Germany
德国对客户端扫描 CSAM、恐怖主义、毒品贩运、毒品使用和逃税的态度
Empirical Evaluation of Secure Development Processes (Dagstuhl Seminar 19231)
安全开发流程的实证评估(Dagstuhl 研讨会 19231)
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Shostack;Matthew Smith;S. Weber;M. Zurko
  • 通讯作者:
    M. Zurko

Matthew Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Smith', 18)}}的其他基金

Collaborative Research: MRA: Distributions of Macrofungi: Quantifying Ecosystem and Climate Drivers of Fungal Reproduction
合作研究:MRA:大型真菌的分布:量化真菌繁殖的生态系统和气候驱动因素
  • 批准号:
    2106123
  • 财政年份:
    2022
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Standard Grant
SBIR Phase II: High thermal conductivity continuous fiber reinforced 3D printing materials
SBIR第二期:高导热连续纤维增强3D打印材料
  • 批准号:
    2129734
  • 财政年份:
    2021
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: Defining the Scope and Consequences of Ectomycorrhizal Fungal Control on Forest Organic Matter Decomposition
合作研究:确定外生菌根真菌控制森林有机物分解的范围和后果
  • 批准号:
    2019658
  • 财政年份:
    2020
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Standard Grant
Collaborative Research:NCS-FO:Volitional modulation of neural activity in the visual cortex
合作研究:NCS-FO:视觉皮层神经活动的意志调节
  • 批准号:
    1954107
  • 财政年份:
    2019
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Standard Grant
STTR Phase II: Connected low-power wearable technology that provides personalized thermal comfort in offices
STTR 第二阶段:互联低功耗可穿戴技术,为办公室提供个性化的热舒适度
  • 批准号:
    1831178
  • 财政年份:
    2018
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Standard Grant
Collaborative Research:NCS-FO:Volitional modulation of neural activity in the visual cortex
合作研究:NCS-FO:视觉皮层神经活动的意志调节
  • 批准号:
    1734901
  • 财政年份:
    2017
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Standard Grant
STTR Phase I: Wearable technology that provides real-time comfort data to smart buildings and personalized comfort to occupants
STTR 第一阶段:可穿戴技术,为智能建筑提供实时舒适度数据,并为居住者提供个性化舒适度
  • 批准号:
    1622892
  • 财政年份:
    2016
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Standard Grant
EAGER/RUI: One-Step, Programed Alignment of Liquid Crystal Elastomers by Guest Host Interactions
EAGER/RUI:通过客主交互对液晶弹性体进行一步式、程序化排列
  • 批准号:
    1649403
  • 财政年份:
    2016
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Standard Grant
Digitization TCN: Collaborative: The Microfungi Collections Consortium: A Networked Approach to Digitizing Small Fungi with Large Impacts on the Function and Health of Ecosystems
数字化 TCN:协作:微型真菌收藏联盟:对对生态系统功能和健康产生重大影响的小型真菌进行数字化的网络方法
  • 批准号:
    1502763
  • 财政年份:
    2015
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Standard Grant
Symbiotic ectomycorrhizal fungi in southern South America: macroecology and evolutionary history from community to landscape scale
南美洲南部的共生外生菌根真菌:从群落到景观尺度的宏观生态学和进化史
  • 批准号:
    1354802
  • 财政年份:
    2014
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于双势垒阳极的低导通损耗硅基GaN纵向沟槽型SBD研究
  • 批准号:
    62304240
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Si/石墨烯异质衬底上GaN基紫外探测器的缺陷控制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
硅衬底准垂直结构氮化镓功率电子材料与器件
  • 批准号:
    62234002
  • 批准年份:
    2022
  • 资助金额:
    282 万元
  • 项目类别:
    重点项目
单片集成的硅基氮化镓非对称耦合微盘激光特性调控研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型硅基GaN功率集成技术:衬底去耦合隔离方法与高压串扰效应抑制机理
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目

相似海外基金

Si基板上GaN縦型パワーデバイスの低抵抗および高耐圧化に関する研究
硅衬底低阻高击穿GaN垂直功率器件研究
  • 批准号:
    23K26158
  • 财政年份:
    2024
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Si基板上GaN縦型パワーデバイスの低抵抗および高耐圧化に関する研究
硅衬底低阻高击穿GaN垂直功率器件研究
  • 批准号:
    23H01464
  • 财政年份:
    2023
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Enhancing GaN-on-Si high electron mobility transistor technology for high frequency and high power applications
职业:增强用于高频和高功率应用的硅基氮化镓高电子迁移率晶体管技术
  • 批准号:
    2239302
  • 财政年份:
    2023
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Continuing Grant
Heterojunction formation of conductive diamond and GaN, Ga2O3 for vertical device applications
用于垂直器件应用的导电金刚石和 GaN、Ga2O3 异质结形成
  • 批准号:
    20K04581
  • 财政年份:
    2020
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of laser-irradiated acceptor activation technology of GaN super junction power devices for high-efficiency power systems
用于高效电力系统的GaN超级结功率器件的激光辐照受主激活技术的开发
  • 批准号:
    18K18866
  • 财政年份:
    2018
  • 资助金额:
    $ 41.89万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了