CAREER: Enhancing GaN-on-Si high electron mobility transistor technology for high frequency and high power applications
职业:增强用于高频和高功率应用的硅基氮化镓高电子迁移率晶体管技术
基本信息
- 批准号:2239302
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is jointly funded by the Electrical, Communications and Cyber Systems (ECCS) and the Established Program to Stimulate Competitive Research (EPSCoR). GaN electronics attract much interest as the potential candidate to replace silicon electronics in a wide range of applications: spanning from 5G commercial wireless infrastructure, electronic warfare, and communications applications to consumer electronics, data centers, electric vehicles, electricity grid, and renewable energy systems. The GaN electronics can be built on various kinds of substrates (i.e. Si and SiC), in which the GaN-on-Si seems to be the most promising technology due to its low cost and large scale capability. However, the GaN-on-Si technology is still premature and is inferior to the GaN-on-SiC technology. A deep understanding of the real reasons for impeding its performance is indispensable. This proposal aims to provide insights to understand the fundamental problems of GaN-on-Si technology and develop the ability to enhance its performance. The successful implementation of this work is expected to revolutionize the GaN-on-Si high electron mobility transistor technology, which can be applied to high frequency and high power electronic systems. What integrated into the research activities is a broad scope of educational and outreach efforts including educating young people with emerging device technology for miniaturization, integration and improved efficiency, developing new courses and internships, interacting with industry and disseminating K-12 Lithokit, which are beneficial for workforce development. The proposed work addressing a number of fabrication process challenges facing GaN-on-Si technology that, if successful, will result in performance enhancement for both high frequency and high power applications. Specifically, through a novel self-aligned T-shaped gate process, we expect to revolutionize GaN-on-Si technology by enhancing its RF performance fT/fMAX to values comparable to its GaN-on-SiC counterpart and its power performance close to its theoretical limit. The innovative self-aligned T-shape gate process where the T-foot length and stem height can be used to downscale the gate length and minimize the parasitic capacitance for improved RF performance and the T-head can be adopted as the field plate to enhance device power performance. In addition, the developed gate dielectrics and field plate technology can be further extended to other transistors for power applications. The developed material and device parameters are of great value to all other GaN-related devices. The proposed research will not only advance the basic science and technology of the GaN-on-Si HEMTs, but also set an example for the investigation of the physical and chemical understanding of the relationship between material surface and interface properties and fabrication process and provide a deeper understanding of the relationship between the fabrication process and device performance. The courses developed from this program will educate young people with emerging device technology for miniaturization, integration and improved efficiency, which is one of the NSF’s desired societal impacts. The new courses, internships, interactions with industry, and K-12 “Lithokit” will increase the audience exposed to the device field, and help expand the workforce. In addition, through the collaborative industry programs, the potential to commercialize this technology has already attracted industry professionals, which will greatly impact semiconductor companies that fabricate chips.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由电气、通信和网络系统 (ECCS) 和刺激竞争研究既定计划 (EPSCoR) 联合资助,作为在广泛应用中替代硅电子器件的潜在候选者,GaN 电子器件引起了广泛关注:从 5G 商业无线基础设施、电子战和通信应用到消费电子产品、数据中心、电动汽车、电网和可再生能源系统,GaN 电子产品可以构建在各种类型的基板上(即硅和硅)。 SiC),其中 GaN-on-Si 由于其低成本和大规模能力而似乎是最有前途的技术,但是 GaN-on-Si 技术仍为时过早,并且不如 GaN-on-SiC。深入了解阻碍其性能的真正原因是必不可少的,该提案旨在提供深入了解硅基氮化镓技术的基本问题并提高其性能的能力。有望彻底改变硅基氮化镓高电子迁移率晶体管技术,可应用于高频和高功率电子系统,研究活动中融入了广泛的教育和推广工作,包括对年轻人进行小型化新兴器件技术的教育。集成和提高效率、新课程和实习、与行业互动以及传播 K-12 Lithokit,这些都有益于劳动力发展。拟议的工作解决了硅基氮化镓技术开发所面临的许多制造工艺挑战,如果成功的话,将导致两者的性能增强具体来说,通过新颖的自对准 T 形栅极工艺,我们期望通过将其 RF 性能 fT/fMAX 提高到与 GaN-on- 相当的值来彻底改变 GaN-on-Si 技术。 SiC 对应物及其功率性能接近其理论极限。创新的自对准 T 形栅极工艺,其中 T 脚长度和茎高度可用于缩小栅极长度并最大限度地减少寄生电容,从而提高 RF 性能和T型头此外,所开发的栅极电介质和场板技术可以进一步扩展到其他功率应用晶体管,所开发的材料和器件参数对于所有其他GaN-晶体管具有重要价值。相关器件的研究不仅将推进硅基氮化镓HEMT的基础科学和技术,而且为研究材料表面和界面特性与制造工艺之间关系的物理和化学理解树立了榜样。并加深对两者之间关系的理解该项目开发的课程将向年轻人传授新兴设备技术,以实现小型化、集成和提高效率,这是 NSF 期望的社会影响之一。 -12 “Lithokit”将增加接触器件领域的受众,并有助于扩大劳动力。此外,通过行业协作计划,该技术的商业化潜力已经吸引了行业专业人士,这将极大地影响制造半导体的公司。该奖项体现了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuping Zeng其他文献
Liability of Foreignness and the Constitutive Legitimation of Foreign Firms in a Host Country
外国人的责任和外国公司在东道国的构成合法性
- DOI:
10.1016/j.jwb.2020.101111 - 发表时间:
2020-06 - 期刊:
- 影响因子:8.9
- 作者:
Yuping Zeng;Dean Xu - 通讯作者:
Dean Xu
The effect of foreign firms’ population density on exit likelihood in a host country
外国公司人口密度对东道国退出可能性的影响
- DOI:
10.1108/md-03-2019-0354 - 发表时间:
2019-11 - 期刊:
- 影响因子:4.6
- 作者:
Yuping Zeng;Dean Xu - 通讯作者:
Dean Xu
Performance enhancement of monolayer MoS2 transistors by atomic layer deposition of high-k dielectric assisted by Al2O3 seed layer
Al2O3 种子层辅助高 k 电介质原子层沉积提高单层 MoS2 晶体管的性能
- DOI:
10.1088/1361-6463/ab605b - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Guangyang Lin;Meng;Meng Jia;Jie Zhang;Peng Cui;Lincheng Wei;Haochen Zhao;A. T. Johnson;L. Gundlach;Yuping Zeng - 通讯作者:
Yuping Zeng
Effects of whisker surface modification on microstructures, mechanical and thermal properties of β-Si3N4 whiskers reinforced Al matrix composites
晶须表面改性对β-Si3N4晶须增强铝基复合材料微观结构、力学性能和热性能的影响
- DOI:
10.1016/j.matdes.2018.08.055 - 发表时间:
2018-12 - 期刊:
- 影响因子:8.4
- 作者:
Chenxu Zhang;Dongxu Yao;Jinwei Yin;Kaihui Zuo;Yongfeng Xia;Hanqin Liang;Yuping Zeng - 通讯作者:
Yuping Zeng
Fabrication of Germanium Tin Microstructures Through Inductively Coupled Plasma Dry Etching
通过感应耦合等离子体干法刻蚀制造锗锡微结构
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.4
- 作者:
Guangyang Lin;Peng Cui;Tao Wang;R. Hickey;Jie Zhang;Haochen Zhao;J. Kolodzey;Yuping Zeng - 通讯作者:
Yuping Zeng
Yuping Zeng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuping Zeng', 18)}}的其他基金
Collaborative Research: FuSe:Substrate-inverted Multi-Material Integration Technology
合作研究:FuSe:衬底倒置多材料集成技术
- 批准号:
2328840 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
I-Corps: Tunnel FET-based transistor logic for ultra-low-power applications
I-Corps:适用于超低功耗应用的基于隧道 FET 的晶体管逻辑
- 批准号:
1806182 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
增强型HEMT中p-GaN栅双结的强场、高频物性匹配及其加固方法研究
- 批准号:62304242
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于场制固化及电荷俘获的低损耗高线性Si基GaN增强型射频功率器件研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低压低功耗InAlN/GaN增强型HEMT射频功率器件研究
- 批准号:
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
基于空穴电荷诱导的半凹栅增强型GaN p-MOSFET新结构及其机理研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
多沟道InAlGaN/GaN高线性增强型毫米波Fin-HEMT器件研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
- 批准号:
2401619 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341858 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341859 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant