CAREER: Enhancing GaN-on-Si high electron mobility transistor technology for high frequency and high power applications
职业:增强用于高频和高功率应用的硅基氮化镓高电子迁移率晶体管技术
基本信息
- 批准号:2239302
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is jointly funded by the Electrical, Communications and Cyber Systems (ECCS) and the Established Program to Stimulate Competitive Research (EPSCoR). GaN electronics attract much interest as the potential candidate to replace silicon electronics in a wide range of applications: spanning from 5G commercial wireless infrastructure, electronic warfare, and communications applications to consumer electronics, data centers, electric vehicles, electricity grid, and renewable energy systems. The GaN electronics can be built on various kinds of substrates (i.e. Si and SiC), in which the GaN-on-Si seems to be the most promising technology due to its low cost and large scale capability. However, the GaN-on-Si technology is still premature and is inferior to the GaN-on-SiC technology. A deep understanding of the real reasons for impeding its performance is indispensable. This proposal aims to provide insights to understand the fundamental problems of GaN-on-Si technology and develop the ability to enhance its performance. The successful implementation of this work is expected to revolutionize the GaN-on-Si high electron mobility transistor technology, which can be applied to high frequency and high power electronic systems. What integrated into the research activities is a broad scope of educational and outreach efforts including educating young people with emerging device technology for miniaturization, integration and improved efficiency, developing new courses and internships, interacting with industry and disseminating K-12 Lithokit, which are beneficial for workforce development. The proposed work addressing a number of fabrication process challenges facing GaN-on-Si technology that, if successful, will result in performance enhancement for both high frequency and high power applications. Specifically, through a novel self-aligned T-shaped gate process, we expect to revolutionize GaN-on-Si technology by enhancing its RF performance fT/fMAX to values comparable to its GaN-on-SiC counterpart and its power performance close to its theoretical limit. The innovative self-aligned T-shape gate process where the T-foot length and stem height can be used to downscale the gate length and minimize the parasitic capacitance for improved RF performance and the T-head can be adopted as the field plate to enhance device power performance. In addition, the developed gate dielectrics and field plate technology can be further extended to other transistors for power applications. The developed material and device parameters are of great value to all other GaN-related devices. The proposed research will not only advance the basic science and technology of the GaN-on-Si HEMTs, but also set an example for the investigation of the physical and chemical understanding of the relationship between material surface and interface properties and fabrication process and provide a deeper understanding of the relationship between the fabrication process and device performance. The courses developed from this program will educate young people with emerging device technology for miniaturization, integration and improved efficiency, which is one of the NSF’s desired societal impacts. The new courses, internships, interactions with industry, and K-12 “Lithokit” will increase the audience exposed to the device field, and help expand the workforce. In addition, through the collaborative industry programs, the potential to commercialize this technology has already attracted industry professionals, which will greatly impact semiconductor companies that fabricate chips.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由电气,通信和网络系统(ECC)和既定计划(EPSCOR)共同资助。 GAN电子设备引起了人们的极大兴趣,因为潜在的候选人在广泛的应用中取代硅电子产品:从5G商业无线基础设施,电子战以及通信应用程序到消费电子,数据中心,电动汽车,电力电网和可再生能源系统。 GAN电子可以建立在各种底物(即SI和SIC)上,其中Gan-On-Si似乎是最有希望的技术,因为其低成本和大规模的能力。但是,gan-on-si技术仍然为时过早,不如GAN-ON-SIC技术。对阻碍其绩效的真正原因有深刻的理解是必不可少的。该建议旨在提供见解,以了解Gan-On-Si技术的基本问题,并发展提高其性能的能力。预计这项工作的成功实施将彻底改变Gan-on-Si高电子移动晶体管技术,该技术可应用于高频和高功率电子系统。整合到研究活动中的是广泛的教育和推广工作范围,包括教育新兴的设备技术以进行小型化,整合和提高效率,开发新的课程和企业,与行业互动并传播K-12 Lithakit,这对劳动力发展有益。拟议的工作解决了许多制造过程的挑战,挑战Gan-on-Si技术,如果成功,该技术将导致高频和高功率应用的性能提高。具体而言,通过一种新颖的自我对准T形栅极过程,我们希望通过将其RF性能ft/fmax提高到与其GAN-ON-SIC对应物以及接近其理论限制的功率性能相媲美的值,从而彻底改变GAN-ON-SI技术。创新的自我对准T形门工艺可以使用T脚长度和茎高度来降低栅极长度并最大程度地减少寄生电容,以提高RF性能,并且可以将T-Head用作野外板以增强设备功率性能。此外,开发的Gate Dietics和现场板技术可以进一步扩展到其他晶体管以进行电源应用。开发的材料和设备参数对于所有其他与GAN相关的设备都具有很高的价值。拟议的研究不仅将推进Gan-on-Si Hemts的基础科学和技术,而且还树立了对物理和化学理解材料表面与界面性能与制造过程之间关系的投资的榜样,并为制造过程与设备性能之间的关系提供了更深入的了解。从该计划开发的课程将教育年轻人使用新兴的设备技术,以进行小型化,整合和提高效率,这是NSF所需的社会影响之一。新课程,与行业的互动和K-12“ Lithokit”将增加接触设备领域的受众,并有助于扩大劳动力。此外,通过协作行业计划,商业化这项技术的潜力已经吸引了行业专业人员,这将极大地影响制造芯片的半导体公司。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估来获得的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuping Zeng其他文献
Liability of Foreignness and the Constitutive Legitimation of Foreign Firms in a Host Country
外国人的责任和外国公司在东道国的构成合法性
- DOI:
10.1016/j.jwb.2020.101111 - 发表时间:
2020-06 - 期刊:
- 影响因子:8.9
- 作者:
Yuping Zeng;Dean Xu - 通讯作者:
Dean Xu
The effect of foreign firms’ population density on exit likelihood in a host country
外国公司人口密度对东道国退出可能性的影响
- DOI:
10.1108/md-03-2019-0354 - 发表时间:
2019-11 - 期刊:
- 影响因子:4.6
- 作者:
Yuping Zeng;Dean Xu - 通讯作者:
Dean Xu
Effects of whisker surface modification on microstructures, mechanical and thermal properties of β-Si3N4 whiskers reinforced Al matrix composites
晶须表面改性对β-Si3N4晶须增强铝基复合材料微观结构、力学性能和热性能的影响
- DOI:
10.1016/j.matdes.2018.08.055 - 发表时间:
2018-12 - 期刊:
- 影响因子:8.4
- 作者:
Chenxu Zhang;Dongxu Yao;Jinwei Yin;Kaihui Zuo;Yongfeng Xia;Hanqin Liang;Yuping Zeng - 通讯作者:
Yuping Zeng
Performance enhancement of monolayer MoS2 transistors by atomic layer deposition of high-k dielectric assisted by Al2O3 seed layer
Al2O3 种子层辅助高 k 电介质原子层沉积提高单层 MoS2 晶体管的性能
- DOI:
10.1088/1361-6463/ab605b - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Guangyang Lin;Meng;Meng Jia;Jie Zhang;Peng Cui;Lincheng Wei;Haochen Zhao;A. T. Johnson;L. Gundlach;Yuping Zeng - 通讯作者:
Yuping Zeng
Fabrication of Germanium Tin Microstructures Through Inductively Coupled Plasma Dry Etching
通过感应耦合等离子体干法刻蚀制造锗锡微结构
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.4
- 作者:
Guangyang Lin;Peng Cui;Tao Wang;R. Hickey;Jie Zhang;Haochen Zhao;J. Kolodzey;Yuping Zeng - 通讯作者:
Yuping Zeng
Yuping Zeng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuping Zeng', 18)}}的其他基金
Collaborative Research: FuSe:Substrate-inverted Multi-Material Integration Technology
合作研究:FuSe:衬底倒置多材料集成技术
- 批准号:
2328840 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
I-Corps: Tunnel FET-based transistor logic for ultra-low-power applications
I-Corps:适用于超低功耗应用的基于隧道 FET 的晶体管逻辑
- 批准号:
1806182 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
增强型HEMT中p-GaN栅双结的强场、高频物性匹配及其加固方法研究
- 批准号:62304242
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低压低功耗InAlN/GaN增强型HEMT射频功率器件研究
- 批准号:
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
基于空穴电荷诱导的半凹栅增强型GaN p-MOSFET新结构及其机理研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
醋炙甘青青兰靶向增强“清肝热”功效及干预酒精性肝损伤的机制研究
- 批准号:82160818
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
低压低功耗InAlN/GaN增强型HEMT射频功率器件研究
- 批准号:62174125
- 批准年份:2021
- 资助金额:57.00 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
- 批准号:
2401619 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341858 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341859 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Proton radiation therapy combined with immunotherapy for enhancing antitumor immune responses in pancreatic cancer murine models.
质子放射治疗与免疫治疗相结合,增强胰腺癌小鼠模型的抗肿瘤免疫反应。
- 批准号:
24K10423 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Post-COVID-19 Multicultural Community Building in Japan: Enhancing Risk Communication and Resilience among Foreign Residents
COVID-19 后日本的多元文化社区建设:加强外国居民的风险沟通和抵御能力
- 批准号:
24K15447 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)