Strained germanium photonic crystal membranes for scalable and efficient silicon-based photonic devices

用于可扩展且高效的硅基光子器件的应变锗光子晶体膜

基本信息

  • 批准号:
    EP/V048732/1
  • 负责人:
  • 金额:
    $ 25.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Silicon is ubiquitous for electronics and the most widely exploited semiconductor in the world available in plentiful and cheap supply. In spite of its success in electronics, silicon is fundamentally limited in terms of its ability to produce light. This is due to its so-called indirect band gap which means that electrons cannot easily lose energy by producing photons. In contrast, in direct band gap compound semiconductors such as GaAs and InP electrons can very easily lose energy resulting in the production of photons. Consequently, such semiconductors are widely exploited in light emitters including lasers and light emitting diodes. However, compound semiconductors are much more expensive to produce. Hence there is a strong desire to be able to produce optically-efficient direct band gap semiconductors on a silicon-based platform. This project aims to resolve this fundamental constraint by develop an entirely new approach to fabricating direct band gap germanium layers on silicon. Germanium can be readily grown on silicon and has a band gap that is much closer to being direct. It has been theoretically predicted that by straining the germanium crystal by >2% (tensile), it will become a direct band gap semiconductor. Producing stable highly strained germanium layers has proven to be technologically challenging. We will overcome this challenge using our recently discovered ion-implantation method to generate stable high tensile strained germanium layers. Such layers offer the potential to achieve record optical efficiencies in germanium. Using these layers we will demonstrate optical gain and lasing in photonic crystal nanocavities in the mid-infrared using an all group-IV based system. This combination of electronic- and photonic band structure and strain engineering offers a step-change in developing lasers on silicon with strong exploitation potential to scale-up and transform sensors for medical, environmental and industrial applications.
硅无处不在电子产品,是世界上最广泛利用的半导体,可提供丰富和廉价的供应。尽管它在电子产品方面取得了成功,但硅在产生光的能力方面从根本上受到限制。这是由于其所谓的间接带隙,这意味着电子无法通过产生光子轻松损失能量。相反,在直接带隙化合物中的半导体中,例如GAA和INP电子很容易失去能量,从而产生光子的产生。因此,在包括激光器和发光二极管在内的光发射器中广泛利用此类半导体。但是,化合物半导体的生产价格要贵得多。因此,人们强烈希望能够在基于硅的平台上产生光学效率高效的直接带隙半导体。该项目旨在通过开发一种在硅上制造直接带Gap锗层的全新方法来解决这一基本限制。锗可以很容易地在硅上生长,并且具有更接近直接的乐队缝隙。从理论上讲,通过将锗晶体应压> 2%(拉伸),它将成为直接带隙半导体。事实证明,生产稳定的高度紧张的锗层在技术上具有挑战性。我们将使用最近发现的离子植入方法克服这一挑战,以产生稳定的高拉伸紧张的锗层。这样的层提供了实现锗中创纪录的光学效率的潜力。使用这些层,我们将使用所有基于组IV的系统在中红外的光子晶体纳米腔中证明光增益和激光。电子和光子带结构和应变工程的这种组合在硅上开发激光器的逐步变化,具有强大的利用潜力,可扩展和转换医疗,环境和工业应用的传感器。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strain-balanced GaAs 1-x Bi x /GaN y As 1-y W-type quantum wells for GaAs-based 1.3-1.6 µm lasers
用于 GaAs 基 1.3-1.6 µm 激光器的应变平衡 GaAs 1-x Bi x /GaN y As 1-y W 型量子阱
  • DOI:
    10.1109/nusod52207.2021.9541434
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Davidson Z
  • 通讯作者:
    Davidson Z
Auger Recombination in Mid-Infrared Quantum Well Lasers
中红外量子阱激光器中的俄歇复合
  • DOI:
    10.1109/cleo/europe-eqec52157.2021.9542167
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eales T
  • 通讯作者:
    Eales T
Effect of bismuth incorporation on recombination mechanisms in GaAsBi/GaAs heterostructures
铋掺入对 GaAsBi/GaAs 异质结构复合机制的影响
  • DOI:
    10.1007/s10854-023-09839-0
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Batool Z
  • 通讯作者:
    Batool Z
Formamidinium Lead Halide Perovskite Nanocomposite Scintillators.
The Nature of Auger Recombination in Type-I Quantum Well Lasers Operating in the Mid-Infrared
在中红外工作的 I 型量子阱激光器中俄歇复合的性质
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Sweeney其他文献

Stephen Sweeney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Sweeney', 18)}}的其他基金

Realising a solid state photomultiplier and infrared detectors through Bismide containing semiconductors
通过含铋半导体实现固态光电倍增管和红外探测器
  • 批准号:
    EP/N021037/1
  • 财政年份:
    2016
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Grant
Exploring Short Wavelength Limits for High Performance Quantum Cascade Lasers
探索高性能量子级联激光器的短波长限制
  • 批准号:
    EP/H050787/1
  • 财政年份:
    2010
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Grant
Efficient Photonic Devices for Near- and Mid-Infrared Applications
用于近红外和中红外应用的高效光子器件
  • 批准号:
    EP/H005587/1
  • 财政年份:
    2010
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Fellowship
Materials World Network: III-V Bismide Materials for IR and Mid IR Semiconductors
材料世界网络:用于红外和中红外半导体的 III-V 双酰胺材料
  • 批准号:
    EP/G064725/1
  • 财政年份:
    2009
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Grant

相似国自然基金

锗/硅基外延InAs/GaAs量子点激光器的光学噪声特性研究
  • 批准号:
    61804095
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
光纤光栅解调光路的CMOS工艺兼容硅基锗光子集成关键技术研究
  • 批准号:
    61675154
  • 批准年份:
    2016
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
基于锗酸盐玻璃双包层高掺杂铥光子晶体光纤的制备与性能研究
  • 批准号:
    61405096
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
模板辅助离子液体电沉积锗和硅锗三维光子晶体的研究
  • 批准号:
    51174063
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
绝缘体上的锗光子晶体激光研究
  • 批准号:
    61107031
  • 批准年份:
    2011
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Germanium for next generation photonic and microelectronic devices
用于下一代光子和微电子设备的锗
  • 批准号:
    RGPIN-2017-04698
  • 财政年份:
    2021
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Discovery Grants Program - Individual
Germanium for next generation photonic and microelectronic devices
用于下一代光子和微电子设备的锗
  • 批准号:
    RGPIN-2017-04698
  • 财政年份:
    2020
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Discovery Grants Program - Individual
Germanium for next generation photonic and microelectronic devices
用于下一代光子和微电子设备的锗
  • 批准号:
    RGPIN-2017-04698
  • 财政年份:
    2019
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Discovery Grants Program - Individual
Acute nose-on-a-chip based on mid-infrared graphene-on-silicon hybrid photonic-plasmonic waveguides
基于中红外硅基石墨烯混合光子-等离子体波导的急性芯片鼻子
  • 批准号:
    18K13798
  • 财政年份:
    2018
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Germanium for next generation photonic and microelectronic devices
用于下一代光子和微电子设备的锗
  • 批准号:
    RGPIN-2017-04698
  • 财政年份:
    2018
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了