Efficient Photonic Devices for Near- and Mid-Infrared Applications
用于近红外和中红外应用的高效光子器件
基本信息
- 批准号:EP/H005587/1
- 负责人:
- 金额:$ 127.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to address many issues of growing importance in today's world. We are all becoming increasingly technology-dependent, whether for entertainment, critical areas, e.g. healthcare and perhaps most notably for communication. All of these technologies require energy and as our appetite for higher performance, faster and better technology increases, the demand on natural resources increases correspondingly. Photonics (the use and manipulation of light) is perhaps one of the most widely used technologies, whether it be for sending information at high speeds across the internet, for reading/writing data onto DVDs, laser surgery and so on. Photonic components (lasers, light emitting diodes etc.) are the fundamental building blocks of this technology and are produced in their billions annually (with revenues in the multi $1Bs). In spite of the widespread use of these devices, their efficiency is often relatively low, and compounded by a strong temperature sensitivity, particularly for devices operating in the near- and mid-infrared regions of the electromagnetic spectrum. This has largely held back the widespread deployment of mid-infrared lasers, for example in environmental and medical sensing (many gases are absorbed at these wavelengths) and other forms of free-space optical communication. In the near-infrared, telecommunications lasers operating in the optical fibre optimum transmission window at 1.55um are both inefficient and temperature sensitive. As a result, these devices require additional control electronics which consume significantly more power than the lasers themselves! Typically, more than 90% of the energy is such a system is wasted as heat.This proposal aims to tackle these issues in a coordinated manner since the core issues influencing near- and mid-infrared emitters is the same. The approach of this project is two-fold: (a) to work to develop a better understanding of the physical processes which give rise to poor efficiencies and to work in collaboration with other leading international groups towards developing new semiconductor materials systems which the PI has predicted will strongly suppress such processes (e.g. narrow band gap quantum dot systems and relatively unexplored semiconductor alloys, such as (In)GaAsBi) and (b) to develop novel materials such as dilute nitride phosphides to embed photonic components directly in electronic circuits, which are primarily silicon based. Routing data optically in such circuits could significantly reduce power (heat) dissipation in computers. Together, these approaches offer the potential to provide both large energy savings due to the use of better materials, and cost savings in manufacture, due to integration.The materials and devices in this project will be obtained from leading semiconductor growth groups in North America, Europe and Asia. At Surrey, the PI has established unique experimental techniques (e.g. low temperature and high pressure systems) to probe the physical properties of photonic materials and devices and will use these to determine both the basic materials parameters and the influence these have on device performance. The fellowship will allow the PI an excellent opportunity to lead a significant effort working together with a strong international team to investigate the fundamental physical characteristics of new materials with the aim of developing high efficiency improved photonic technology for widespread applications of importance to UK industry.
该项目旨在解决当今世界日益重要的许多问题。我们都变得越来越依赖技术,无论是娱乐还是关键领域,例如。医疗保健,也许最引人注目的是沟通。所有这些技术都需要能源,随着我们对更高性能、更快和更好技术的需求增加,对自然资源的需求也相应增加。光子学(光的使用和操纵)可能是使用最广泛的技术之一,无论是通过互联网高速发送信息、在 DVD 上读取/写入数据、激光手术等等。光子元件(激光器、发光二极管等)是该技术的基本组成部分,每年生产数十亿个(收入达数十亿美元)。尽管这些设备得到广泛使用,但它们的效率通常相对较低,并且具有很强的温度敏感性,特别是对于在电磁频谱的近红外和中红外区域工作的设备。这在很大程度上阻碍了中红外激光器的广泛部署,例如在环境和医疗传感(许多气体在这些波长下被吸收)和其他形式的自由空间光通信中。在近红外区域,工作在 1.55um 光纤最佳传输窗口中的电信激光器不仅效率低下,而且对温度敏感。因此,这些设备需要额外的控制电子设备,其消耗的功率比激光器本身要多得多!通常,超过 90% 的能量在这样的系统中被浪费为热量。该提案旨在以协调的方式解决这些问题,因为影响近红外和中红外发射器的核心问题是相同的。该项目的方法有两个:(a) 努力更好地理解导致效率低下的物理过程,并与其他领先的国际团体合作开发 PI 拥有的新型半导体材料系统。预计将强烈抑制此类过程(例如窄带隙量子点系统和相对未开发的半导体合金,例如(In)GaAsBi)和(b)开发稀氮化物磷化物等新型材料,将光子元件直接嵌入电子器件中电路,主要是基于硅的。在此类电路中以光学方式路由数据可以显着减少计算机中的功耗(热量)。总之,这些方法提供了通过使用更好的材料而节省大量能源的潜力,以及由于集成而节省制造成本的潜力。该项目中的材料和设备将从北美领先的半导体增长集团获得,欧洲和亚洲。在萨里,PI 建立了独特的实验技术(例如低温和高压系统)来探测光子材料和器件的物理特性,并将利用这些技术来确定基本材料参数及其对器件性能的影响。该奖学金将为 PI 提供绝佳的机会,与强大的国际团队合作,开展重大工作,研究新材料的基本物理特性,旨在开发高效改进的光子技术,广泛应用于对英国工业具有重要意义的领域。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Giant bowing of the band gap and spin-orbit splitting energy in GaP1-xBix dilute bismide alloys
- DOI:10.1038/s41598-019-43142-5
- 发表时间:2019-05-02
- 期刊:
- 影响因子:4.6
- 作者:Bushell, Zoe L.;Broderick, Christopher A.;Sweeney, Stephen J.
- 通讯作者:Sweeney, Stephen J.
Effect of bismuth incorporation on recombination mechanisms in GaAsBi/GaAs heterostructures
铋掺入对 GaAsBi/GaAs 异质结构复合机制的影响
- DOI:10.1007/s10854-023-09839-0
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Batool Z
- 通讯作者:Batool Z
Semiconductor Quantum Well Lasers With a Temperature-Insensitive Threshold Current
具有温度不敏感阈值电流的半导体量子阱激光器
- DOI:10.1109/jstqe.2015.2413403
- 发表时间:2015
- 期刊:
- 影响因子:4.9
- 作者:Adams A
- 通讯作者:Adams A
Relationship between Human Pupillary Light Reflex and Circadian System Status.
- DOI:10.1371/journal.pone.0162476
- 发表时间:2016
- 期刊:
- 影响因子:3.7
- 作者:Bonmati-Carrion MA;Hild K;Isherwood C;Sweeney SJ;Revell VL;Skene DJ;Rol MA;Madrid JA
- 通讯作者:Madrid JA
The electronic band structure of GaBiAs/GaAs layers: Influence of strain and band anti-crossing
- DOI:10.1063/1.4728028
- 发表时间:2012-06-01
- 期刊:
- 影响因子:3.2
- 作者:Batool, Z.;Hild, K.;Sweeney, S. J.
- 通讯作者:Sweeney, S. J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Sweeney其他文献
Stephen Sweeney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Sweeney', 18)}}的其他基金
Strained germanium photonic crystal membranes for scalable and efficient silicon-based photonic devices
用于可扩展且高效的硅基光子器件的应变锗光子晶体膜
- 批准号:
EP/V048732/1 - 财政年份:2021
- 资助金额:
$ 127.84万 - 项目类别:
Research Grant
Realising a solid state photomultiplier and infrared detectors through Bismide containing semiconductors
通过含铋半导体实现固态光电倍增管和红外探测器
- 批准号:
EP/N021037/1 - 财政年份:2016
- 资助金额:
$ 127.84万 - 项目类别:
Research Grant
Exploring Short Wavelength Limits for High Performance Quantum Cascade Lasers
探索高性能量子级联激光器的短波长限制
- 批准号:
EP/H050787/1 - 财政年份:2010
- 资助金额:
$ 127.84万 - 项目类别:
Research Grant
Materials World Network: III-V Bismide Materials for IR and Mid IR Semiconductors
材料世界网络:用于红外和中红外半导体的 III-V 双酰胺材料
- 批准号:
EP/G064725/1 - 财政年份:2009
- 资助金额:
$ 127.84万 - 项目类别:
Research Grant
相似国自然基金
自组装DNA折纸模板指导贵金属图案化生长调控及其纳米光子学性质研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
平带转角二维材料超快光子学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有机杂化超高品质因子微腔非线性光子学研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
叠层二维狄拉克电子体系中的等离激元光子学
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于光子学的毫米波通信感知深度融合机理
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Strained germanium photonic crystal membranes for scalable and efficient silicon-based photonic devices
用于可扩展且高效的硅基光子器件的应变锗光子晶体膜
- 批准号:
EP/V048732/1 - 财政年份:2021
- 资助金额:
$ 127.84万 - 项目类别:
Research Grant
Fabrication of highly efficient photofunctional devices with heterojunctioned quantum dots
异质结量子点高效光功能器件的制造
- 批准号:
18K19128 - 财政年份:2018
- 资助金额:
$ 127.84万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of efficient manufacturing process of nano/micro metal resonators and application for development of optical fuctional devices
纳米/微米金属谐振器高效制造工艺开发及其在光学功能器件开发中的应用
- 批准号:
17H01240 - 财政年份:2017
- 资助金额:
$ 127.84万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
I-Corps: NanoOptics - Highly efficient scintillator photonic devices for national security, medical imaging and high energy particle detection applications
I-Corps:纳米光学 - 用于国家安全、医学成像和高能粒子检测应用的高效闪烁体光子器件
- 批准号:
1536179 - 财政年份:2015
- 资助金额:
$ 127.84万 - 项目类别:
Standard Grant
Technology of making high-efficient organic photonic devices and deep-purple light sources by using surface plasmons
利用表面等离子体制造高效有机光子器件和深紫光源技术
- 批准号:
26390080 - 财政年份:2014
- 资助金额:
$ 127.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)