Quantum spin Hall effect spintronics

量子自旋霍尔效应自旋电子学

基本信息

  • 批准号:
    EP/T034343/1
  • 负责人:
  • 金额:
    $ 109.82万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

In this project we shall investigate the potential for spintronics of the quantum spin Hall (QSH) regime in hybrid nanostructures made by attaching ferromagnetic metal contacts to the edge states of two-dimensional topological insulators. These 2D materials will be formed from semiconducting InAs/GaSb coupled quantum wells. Being able to harness the spin-momentum-locked helical edge states in the QSH regime will have the potential for realising dramatic reductions in the power consumption of classical ICT hardware, and in the longer term offer the prospect of being useful for topological quantum computing. To build such spintronic devices, we need to know the conditions under which current flows through their edge states. We need to know the spin polarisation of a current injected from a ferromagnet into the QSH edge state, and which ferromagnetic contact material provides the largest spin-polarisation. We need to know how efficiently spins can be injected and detected in these QSH edge channels using ferromagnetic metal contacts. We also need to know over what distance spin information can propagate in the QSH edge states, and in what circumstances this distance is the longest.The project is a collaboration between the School of Physics and Astronomy, who have expertise in spintronics and the study of devices incorporating ferromagnetic materials, as well as topological materials, and the School of Electronic and Electrical Engineering, who are capable of growing ultra-high quality InAs/GaSb coupled quantum wells in their III-V semiconductor molecular beam epitaxy system. We will begin by constructing contacted InAs/GaSb mesas with top and bottom gates that allow them to be tuned into a charge-neutral and non-trivial regime, which are the correct conditions for current to flow only in the edge states. We will attach normal drain contacts on either side of a ferromagnetic source contact on a InAs/GaSb mesa and measure the drain currents from left- and right-flowing edge states in the non-trivial edge state regime; the spin-momentum locking in the QSH edge states will mean that these spatially separated currents directly correspond to the spin-resolved currents, allowing a direct measurement of the spin-polarisation of the current injected from the ferromagnet. We shall try different ferromagnetic metals to determine which one works best. We will then study the flow of a current in a QSH edge state between two closely-spaced ferromagnetic contacts, which is expected to be larger when the current flow direction is spin-momentum locked to the majority spin direction of the contacts; reversing the magnetisation direction in the contacts will invert this diode-like behaviour. The difference between forward and reverse currents will tell us the efficiency of the spin injection and detection. Moving the contacts apart will allow us to determine the length over which spins can flow coherently within the edge states by measuring the decline in difference between forward and reverse currents with spacing; we shall study this as a function of temperature in order to determine the physical mechanisms causing the loss of spin coherence. The results we shall obtain will not only lead to high impact publications and conference presentations by shedding light on the possibilities offered by this novel combination of materials, but also develop valuable know-how in the field of quantum spin Hall spintronics for technological applications.
在这个项目中,我们将研究通过将铁磁金属接触连接到二维拓扑绝缘体的边缘态而制成的混合纳米结构中量子自旋霍尔(QSH)体系的自旋电子学潜力。这些 2D 材料将由半导体 InAs/GaSb 耦合量子阱形成。能够利用 QSH 体系中的自旋动量锁定螺旋边缘态将有可能实现经典 ICT 硬件功耗的大幅降低,并从长远来看为拓扑量子计算提供了有用的前景。为了构建这样的自旋电子器件,我们需要知道电流流过其边缘态的条件。我们需要知道从铁磁体注入 QSH 边缘态的电流的自旋极化,以及哪种铁磁接触材料提供最大的自旋极化。我们需要知道使用铁磁金属接触在这些 QSH 边缘通道中注入和检测自旋的效率如何。我们还需要知道自旋信息可以在 QSH 边缘态中传播多远的距离,以及在什么情况下这个距离是最长的。该项目是物理和天文学学院之间的合作,他们在自旋电子学和研究方面拥有专业知识。结合铁磁材料和拓扑材料的器件,以及电子电气工程学院,他们能够在其 III-V 族半导体分子束外延系统中生长超高质量的 InAs/GaSb 耦合量子阱。我们将首先构建具有顶栅和底栅的接触式 InAs/GaSb 台面,使它们能够调整到电荷中性和非平凡的状态,这是电流仅在边缘态流动的正确条件。我们将在 InAs/GaSb 台面上的铁磁源极触点的两侧连接正常的漏极触点,并测量非平凡边缘态区域中左流和右流边缘态的漏极电流; QSH 边缘态的自旋动量锁定意味着这些空间分离的电流直接对应于自旋分辨电流,从而可以直接测量从铁磁体注入的电流的自旋极化。我们将尝试不同的铁磁金属,以确定哪一种效果最好。然后,我们将研究两个紧密间隔的铁磁接触之间 QSH 边缘态的电流流动,当电流流动方向自旋动量锁定到接触的主要自旋方向时,预计电流会更大;反转触点中的磁化方向将反转这种类似二极管的行为。正向和反向电流之间的差异将告诉我们自旋注入和检测的效率。将接触点分开将使我们能够通过测量正向和反向电流之间的差异随间距的下降而确定自旋在边缘态内一致流动的长度;我们将研究它作为温度的函数,以确定导致自旋相干性损失的物理机制。我们将获得的结果不仅将通过揭示这种新颖的材料组合所提供的可能性而带来高影响力的出版物和会议演示,而且还将在量子自旋霍尔自旋电子学领域开发有价值的专业知识以用于技术应用。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scaling of Dzyaloshinskii-Moriya interaction with magnetization in Pt/Co(Fe)B/Ir multilayers
  • DOI:
    10.1103/physrevb.104.224402
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Alshammari, Khulaif;Haltz, Eloi;Moore, Thomas A.
  • 通讯作者:
    Moore, Thomas A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Marrows其他文献

Christopher Marrows的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Marrows', 18)}}的其他基金

Materials: Magnetic Skyrmions
材料:磁性斯格明子
  • 批准号:
    BB/X004996/1
  • 财政年份:
    2022
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Research Grant
Synthetic Antiferromagnetic Skyrmions
合成反铁磁斯格明子
  • 批准号:
    EP/T006803/1
  • 财政年份:
    2020
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Research Grant
Current-driven domain wall motion and magnetomemristance in FeRh-based nanostructures
FeRh 基纳米结构中电流驱动的畴壁运动和磁阻
  • 批准号:
    EP/M018504/1
  • 财政年份:
    2015
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Research Grant
Artificial Spin Ice: Designer Matter Far From Equilibrium
人造旋转冰:设计问题远离平衡
  • 批准号:
    EP/L00285X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Research Grant
Studies of Artificial Spin Ice at Brookhaven and Lawrence Berkeley National Laboratories
布鲁克海文和劳伦斯伯克利国家实验室的人造旋转冰研究
  • 批准号:
    EP/J021482/1
  • 财政年份:
    2012
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Research Grant
UK-Japanese Collaboration on Current-Driven Domain Wall Dynamics
英日在电流驱动畴壁动力学方面的合作
  • 批准号:
    EP/J000337/1
  • 财政年份:
    2011
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Research Grant
Spin-Torque and Spin Polarisation in Epitaxial Magnetic Silicides
外延磁性硅化物中的自旋扭矩和自旋极化
  • 批准号:
    EP/J007110/1
  • 财政年份:
    2011
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Research Grant
Spin-Polarised Tunnelling in Magnetic Nanostructures: A UK-China Collaboration
磁性纳米结构中的自旋极化隧道:中英合作
  • 批准号:
    EP/H001875/1
  • 财政年份:
    2010
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Research Grant
Current-Driven Domain Wall Motion in Multilayer Nanowires
多层纳米线中电流驱动的畴壁运动
  • 批准号:
    EP/I011668/1
  • 财政年份:
    2010
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Research Grant
MATERIALS WORLD NETWORK The Magnetostructural Response in Heterostructured Systems: a US - UK Collaboration
MATERIALS WORLD NETWORK 异质结构系统中的磁结构响应:美国 - 英国合作
  • 批准号:
    EP/G065640/1
  • 财政年份:
    2009
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Research Grant

相似国自然基金

矿山旋转机械的多模态小样本故障诊断方法研究
  • 批准号:
    52374155
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
静态推靠式旋转导向工具疲劳失效机理及寿命预测研究
  • 批准号:
    42372356
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
磁控溅射等离子体中旋转辐条模的形成机理及其对电子和离子输运性质的影响
  • 批准号:
    12305221
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于旋转多普勒效应的大气涡量测量方法研究
  • 批准号:
    42305137
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
太阳风法拉第旋转成像计划
  • 批准号:
    42374197
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Quantum spin liquids meet spintronics: Theory of probing quantum spin liquids with spin Hall effects
职业:量子自旋液体遇到自旋电子学:利用自旋霍尔效应探测量子自旋液体的理论
  • 批准号:
    2238135
  • 财政年份:
    2023
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Continuing Grant
Investigation of spinon Fermi surfaces in molecular quantum spin liquid materials by thermal Hall effect measurements
通过热霍尔效应测量研究分子量子自旋液体材料中的自旋费米面
  • 批准号:
    23K13065
  • 财政年份:
    2023
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exotic physics in quantum Hall and spin liquid systems
量子霍尔和自旋液体系统中的奇异物理
  • 批准号:
    RGPIN-2020-04688
  • 财政年份:
    2022
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Discovery Grants Program - Individual
Testing quantum spin liquid models using the thermal Hall effect
使用热霍尔效应测试量子自旋液体模型
  • 批准号:
    534577-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Quantum spin Hall effect spintronics
量子自旋霍尔效应自旋电子学
  • 批准号:
    2597135
  • 财政年份:
    2021
  • 资助金额:
    $ 109.82万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了