MATERIALS WORLD NETWORK The Magnetostructural Response in Heterostructured Systems: a US - UK Collaboration

MATERIALS WORLD NETWORK 异质结构系统中的磁结构响应:美国 - 英国合作

基本信息

  • 批准号:
    EP/G065640/1
  • 负责人:
  • 金额:
    $ 63.82万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Magnetic materials are ubiquitous in modern society, present in advanced devices, sensors and motors of every kind. As the magnetic force loses strength only over very long distances, it allows for communication between components that are physically well-separated. This unique property permits the conversion of electrical to mechanical energy, assists microwave devices in telecommunications, transmission and distribution of electric power, enables data storage systems and facilitates sensing of ambient conditions. Steady effort has been extended since the invention of the magnetic compass (first reported in the Qin Dynasty, 221 BC) to tailor and optimize magnetic materials' performance. Two thousand years later it is clear that breakthrough advances in the performance of magnetic devices will require new materials and novel design principles to control magnetic performance. In this project we will clarify the origins of a significant but poorly-understood phenomenon of extrinsic control of a classically intrinsic parameter - the magnetic transition temperature - in layered systems comprised of magnetic materials with strong electron-lattice coupling. This will be done by a joint transatlantic programme of research between the University of Leeds and STFC Rutherford Appleton Laboratory in the UK, and Northeastern University in the USA. Brookhaven National Laboratory will participate as a project partner. We shall use FeRh, which crystallizes in the CsCl phase, as a model system: this material undergoes a phase transition from antiferromagnetic (AF) to ferromagnetic (F) on warming through a critical temperature that is conveniently located at about 100 degrees Celsius, accompanied by an isotropic lattice expansion. As well as providing a material with the fascinating property that magnetism can be switched on and off at will, deep questions about the underlying mechanism for the transition remain.We have already demonstrated the capability to grow epitaxial thin films of this material in Leeds and the intrinsic transition has been characterized by SQUID, synchrotron x-ray diffraction, x-ray magnetic circular dichroism, and polarised neutron reflectometry by our research partners in the USA and UK. We now seek to use joint NSF-EPSRC support to cement this link, and carry out some novel experiments where we seek to control the AF-F phase transition using extrinsic parameters. In the films we have at present, as is known in the bulk, the position of the phase boundary can be controlled intrinsically by the exact FeRh stoichiometry. A few tantalising results are present in the literature where the transition has been quite markedly affected by other external parameters by building heterostructures incorporating magnetostructural materials. Here we will throw light on the underlying mechanism for the magnetostructural response by exploring such heterostructures and the response of the FeRh to extrinsic strain, magnetostatic and exchange fields, and seek ways in which they might be combined to enhance each other.
磁性材料在现代社会中无处不在,存在于各种先进设备、传感器和电机中。由于磁力仅在很长的距离内才会失去强度,因此它允许物理上分离的组件之间进行通信。这种独特的特性允许将电能转换为机械能,协助微波设备进行电信、电力传输和分配,支持数据存储系统并促进环境条件的感测。自磁罗盘发明(首次报道于公元前 221 年秦朝)以来,人们不断努力定制和优化磁性材料的性能。两千多年后,很明显,磁性器件性能的突破性进步将需要新材料和新颖的设计原理来控制磁性性能。在这个项目中,我们将阐明在由具有强电子晶格耦合的磁性材料组成的层状系统中,经典内在参数(磁转变温度)的外在控制现象的起源,这一现象是重要的,但人们对此知之甚少。这将由利兹大学和英国 STFC 卢瑟福阿普尔顿实验室以及美国东北大学之间的跨大西洋联合研究计划来完成。布鲁克海文国家实验室将作为项目合作伙伴参与。我们将使用在 CsCl 相中结晶的 FeRh 作为模型系统:这种材料在升温到临界温度(通常位于 100 摄氏度左右)时会经历从反铁磁 (AF) 到铁磁 (F) 的相变,同时伴随着通过各向同性晶格膨胀。除了提供一种具有磁性可以随意打开和关闭的迷人特性的材料外,关于转变的根本机制的深刻问题仍然存在。我们已经在利兹和英国展示了生长这种材料的外延薄膜的能力。我们在美国和英国的研究合作伙伴已通过 SQUID、同步加速器 X 射线衍射、X 射线磁圆二色性和偏振中子反射计对本征跃迁进行了表征。我们现在寻求利用 NSF-EPSRC 的联合支持来巩固这种联系,并进行一些新颖的实验,寻求使用外在参数来控制 AF-F 相变。在我们目前拥有的薄膜中,众所周知,相界的位置可以通过精确的 FeRh 化学计量本质上控制。文献中出现了一些诱人的结果,其中通过构建结合磁结构材料的异质结构,转变受到其他外部参数的显着影响。在这里,我们将通过探索这种异质结构以及 FeRh 对外在应变、静磁和交换场的响应来阐明磁结构响应的基本机制,并寻求将它们结合起来以相互增强的方法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temperature controlled motion of an antiferromagnet-ferromagnet interface within a dopant-graded FeRh epilayer
  • DOI:
    10.1063/1.4907282
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Le Graet, C.;Charlton, T. R.;Marrows, C. H.
  • 通讯作者:
    Marrows, C. H.
Ferromagnetism at the interfaces of antiferromagnetic FeRh epilayers
  • DOI:
    10.1103/physrevb.82.184418
  • 发表时间:
    2010-11-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Fan, R.;Kinane, C. J.;Langridge, S.
  • 通讯作者:
    Langridge, S.
Observation of a temperature dependent asymmetry in the domain structure of a Pd-doped FeRh epilayer
  • DOI:
    10.1088/1367-2630/16/11/113073
  • 发表时间:
    2014-11-26
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Kinane, C. J.;Loving, M.;Langridge, Sean
  • 通讯作者:
    Langridge, Sean
Observation of a temperature dependent asymmetry in the domain structure of a Pd doped FeRh epilayer
Pd 掺杂 FeRh 外延层域结构中温度依赖性不对称性的观察
  • DOI:
    10.48550/arxiv.1407.2154
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kinane C
  • 通讯作者:
    Kinane C
Asymmetric "melting" and "freezing" kinetics of the magnetostructural phase transition in B2-ordered FeRh epilayers
  • DOI:
    10.1063/1.4883369
  • 发表时间:
    2014-06-09
  • 期刊:
  • 影响因子:
    4
  • 作者:
    de Vries, M. A.;Loving, M.;Marrows, C. H.
  • 通讯作者:
    Marrows, C. H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Marrows其他文献

Christopher Marrows的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Marrows', 18)}}的其他基金

Materials: Magnetic Skyrmions
材料:磁性斯格明子
  • 批准号:
    BB/X004996/1
  • 财政年份:
    2022
  • 资助金额:
    $ 63.82万
  • 项目类别:
    Research Grant
Quantum spin Hall effect spintronics
量子自旋霍尔效应自旋电子学
  • 批准号:
    EP/T034343/1
  • 财政年份:
    2021
  • 资助金额:
    $ 63.82万
  • 项目类别:
    Research Grant
Synthetic Antiferromagnetic Skyrmions
合成反铁磁斯格明子
  • 批准号:
    EP/T006803/1
  • 财政年份:
    2020
  • 资助金额:
    $ 63.82万
  • 项目类别:
    Research Grant
Current-driven domain wall motion and magnetomemristance in FeRh-based nanostructures
FeRh 基纳米结构中电流驱动的畴壁运动和磁阻
  • 批准号:
    EP/M018504/1
  • 财政年份:
    2015
  • 资助金额:
    $ 63.82万
  • 项目类别:
    Research Grant
Artificial Spin Ice: Designer Matter Far From Equilibrium
人造旋转冰:设计问题远离平衡
  • 批准号:
    EP/L00285X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 63.82万
  • 项目类别:
    Research Grant
Studies of Artificial Spin Ice at Brookhaven and Lawrence Berkeley National Laboratories
布鲁克海文和劳伦斯伯克利国家实验室的人造旋转冰研究
  • 批准号:
    EP/J021482/1
  • 财政年份:
    2012
  • 资助金额:
    $ 63.82万
  • 项目类别:
    Research Grant
UK-Japanese Collaboration on Current-Driven Domain Wall Dynamics
英日在电流驱动畴壁动力学方面的合作
  • 批准号:
    EP/J000337/1
  • 财政年份:
    2011
  • 资助金额:
    $ 63.82万
  • 项目类别:
    Research Grant
Spin-Torque and Spin Polarisation in Epitaxial Magnetic Silicides
外延磁性硅化物中的自旋扭矩和自旋极化
  • 批准号:
    EP/J007110/1
  • 财政年份:
    2011
  • 资助金额:
    $ 63.82万
  • 项目类别:
    Research Grant
Spin-Polarised Tunnelling in Magnetic Nanostructures: A UK-China Collaboration
磁性纳米结构中的自旋极化隧道:中英合作
  • 批准号:
    EP/H001875/1
  • 财政年份:
    2010
  • 资助金额:
    $ 63.82万
  • 项目类别:
    Research Grant
Current-Driven Domain Wall Motion in Multilayer Nanowires
多层纳米线中电流驱动的畴壁运动
  • 批准号:
    EP/I011668/1
  • 财政年份:
    2010
  • 资助金额:
    $ 63.82万
  • 项目类别:
    Research Grant

相似国自然基金

基于真实世界数据的糖尿病共病网络演化和预测
  • 批准号:
    62302065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应用于开放世界物体识别的检索增强视觉网络
  • 批准号:
    62376134
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
小世界分层RF/FSO Mesh网络构建与优化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Lévy噪声激励和小世界网络结构下的神经系统的奇异态
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据驱动的世界集装箱海运网络演化机制与抗毁性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FAMILY WELL-BEING RESEARCH NETWORK (“FAM-NET”): Measuring Family Well-Being across the Lifespan
家庭福祉研究网络 (“FAM-NET”):衡量整个生命周期的家庭福祉
  • 批准号:
    10664959
  • 财政年份:
    2021
  • 资助金额:
    $ 63.82万
  • 项目类别:
FAMILY WELL-BEING RESEARCH NETWORK (“FAM-NET”): Measuring Family Well-Being across the Lifespan
家庭福祉研究网络 (“FAM-NET”):衡量整个生命周期的家庭福祉
  • 批准号:
    10437604
  • 财政年份:
    2021
  • 资助金额:
    $ 63.82万
  • 项目类别:
Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
  • 批准号:
    1711849
  • 财政年份:
    2016
  • 资助金额:
    $ 63.82万
  • 项目类别:
    Continuing Grant
Materials World Network, SusChEM: Hybrid Sol-Gel Route to Chromate-free Anticorrosive Coatings
材料世界网络,SusChEM:混合溶胶-凝胶路线制备无铬酸盐防腐涂料
  • 批准号:
    1313544
  • 财政年份:
    2014
  • 资助金额:
    $ 63.82万
  • 项目类别:
    Standard Grant
Materials World Network: Development of high-efficiency photovoltaic devices for optimal performance under a broad range of spectral illumination conditions
材料世界网络:开发高效光伏器件,在广泛的光谱照明条件下实现最佳性能
  • 批准号:
    239013293
  • 财政年份:
    2013
  • 资助金额:
    $ 63.82万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了