Synthetic Antiferromagnetic Skyrmions
合成反铁磁斯格明子
基本信息
- 批准号:EP/T006803/1
- 负责人:
- 金额:$ 103.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project we will stabilise small circular magnetic domains called skyrmions in chiral synthetic antiferromagnetic multilayers and study their current-driven dynamics. The project is based on two recent breakthroughs by our groups: our being able to stabilise skyrmions as a topologically protected structure (making them resistant to annihilation) in a suitably designed single chiral perpendicularly magnetised layer, and being able to move coupled topological defects (domain walls) at low current density in a simple in-plane magnetised synthetic antiferromagnet.Whilst conventional skyrmions are interesting candidates for a variety of novel information storage and processing devices that offer the prospect of very low power operation, they are expected to move slowly at small sizes due to topological damping and are diverted at an angle to their current drive direction by the Magnus forces that lead to a skyrmion Hall effect. To realise their potential, we need to establish the optimal multilayer structure to support synthetic antiferromagnetic skyrmions that are small, highly mobile, and move in the direction of an electrical current drive. We need to find a reliable nucleation method to that can create synthetic antiferromagnetic skyrmions in a controlled manner for further study. We need to know how make synthetic antiferromagnetic skyrmions respond directly to spin current drives by balancing the Magnus forces on the two component skyrmions to reduce the skyrmion Hall angle to zero. Finally, we need to learn how to exploit the expected suppression of topological damping in order to move the synthetic antiferromagnetic skyrmions move at velocities far higher, and at smaller sizes, than for conventional skyrmions. In this project we will prepare chiral magnetic multilayers that support synthetic antiferromagnetic skyrmions, image the skyrmion structures, and fabricate nanoscale devices in which we can measure current-driven skyrmion dynamics. We will combine our expertise with synthetic antiferromagnet multilayers with our proven ability to induce strong Dzyaloshinskii-Moriya interactions at interfaces to combine two coupled skyrmions with opposite polarity and chirality into a synthetic antiferromagnetic skyrmion that can be stabilised at room temperature, with their structure and motion under field imaged using state-of-the-art microscopy techniques. Next, we will study the nucleation of synthetic antiferromagnetic skyrmions at randomly occurring and deliberately introduced defects due to the application of stimuli including pulses of magnetic field or electrical current. We will then prepare skyrmion racetracks along which synthetic antiferromagnetic skyrmions can be propelled using current-driven torques from this optimised multilayer stack and image the skyrmion motion at moderate current densities in order to measure the skyrmion Hall angle and find the conditions when it is zero. We will go on to increase the current densities to seek high velocity skyrmion motion exploiting the suppression of topological damping that arises between coupled topological defects in synthetic antiferromagnets.The results we shall obtain will not only lead to high impact publications and conference presentations by shedding light on the possibilities offered by this novel combination of materials, but also develop potentially valuable knowhow in the field of spintronics based on synthetic antiferromagnetic skyrmions for technological applications.
在这个项目中,我们将稳定手性合成反铁磁多层中称为斯格明子的小圆形磁畴,并研究它们的电流驱动动力学。该项目基于我们小组最近的两项突破:我们能够在适当设计的单个手性垂直磁化层中稳定斯格明子作为拓扑保护结构(使它们抵抗湮灭),并且能够移动耦合拓扑缺陷(域壁)在简单的面内磁化合成反铁磁体中以低电流密度。虽然传统的斯格明子是各种新颖的信息存储和处理设备的有趣候选者,这些设备提供了非常低功耗操作的前景,但它们预计由于拓扑阻尼而以小尺寸缓慢移动,并通过导致斯格明子霍尔效应的马格努斯力以与当前驱动方向成一定角度的方式转向。为了发挥它们的潜力,我们需要建立最佳的多层结构来支持合成反铁磁斯格明子,这些斯格明子体积小、移动性高,并且沿着电流驱动的方向移动。我们需要找到一种可靠的成核方法,能够以受控方式产生合成反铁磁斯格明子,以供进一步研究。我们需要知道如何通过平衡两个分量斯格明子上的马格努斯力来将斯格明子霍尔角减小到零,从而使合成反铁磁斯格明子直接响应自旋电流驱动。最后,我们需要学习如何利用拓扑阻尼的预期抑制,以使合成反铁磁斯格明子以比传统斯格明子更高的速度和更小的尺寸移动。在这个项目中,我们将制备支持合成反铁磁斯格明子的手性磁性多层膜,对斯格明子结构进行成像,并制造可以测量电流驱动的斯格明子动力学的纳米级器件。我们将把我们的专业知识与合成反铁磁体多层膜结合起来,与我们在界面处诱导强 Dzyaloshinskii-Moriya 相互作用的能力相结合,将两个具有相反极性和手性的耦合斯格明子结合成合成反铁磁斯格明子,该合成反铁磁斯格明子可以在室温下稳定,其结构和运动使用最先进的显微镜技术进行现场成像。接下来,我们将研究由于施加磁场或电流脉冲等刺激而随机发生和故意引入的缺陷中合成反铁磁斯格明子的成核。然后,我们将准备斯格明子跑道,沿着该跑道,可以使用来自该优化的多层堆栈的电流驱动扭矩来推动合成反铁磁斯格明子,并在中等电流密度下对斯格明子运动进行成像,以便测量斯格明子霍尔角并找到其为零时的条件。我们将继续增加电流密度,以利用合成反铁磁体中耦合拓扑缺陷之间产生的拓扑阻尼的抑制来寻求高速斯格明子运动。我们将获得的结果不仅会带来高影响力的出版物和会议演讲。不仅研究这种新颖的材料组合所提供的可能性,而且还开发基于合成反铁磁斯格明子的自旋电子学领域潜在的有价值的专业知识,以用于技术应用。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Breathing modes of skyrmion strings in a synthetic antiferromagnet multilayer
- DOI:10.1063/5.0142772
- 发表时间:2021-12
- 期刊:
- 影响因子:3.2
- 作者:Christopher E. A. Barker;E. Haltz;T. Moore;C. Marrows
- 通讯作者:Christopher E. A. Barker;E. Haltz;T. Moore;C. Marrows
Perspective on skyrmion spintronics
- DOI:10.1063/5.0072735
- 发表时间:2021-12-20
- 期刊:
- 影响因子:4
- 作者:Marrows, C. H.;Zeissler, K.
- 通讯作者:Zeissler, K.
Domain wall motion at low current density in a synthetic antiferromagnet nanowire
- DOI:10.1088/1361-6463/ace6b4
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Christopher E A Barker;S. Finizio;E. Haltz;S. Mayr;P. Shepley;T. Moore;G. Burnell;J. Raabe;C. Marrows
- 通讯作者:Christopher E A Barker;S. Finizio;E. Haltz;S. Mayr;P. Shepley;T. Moore;G. Burnell;J. Raabe;C. Marrows
On-axis sputtering fabrication of Tm3Fe5O12 film with perpendicular magnetic anisotropy
垂直磁各向异性Tm3Fe5O12薄膜的同轴溅射制备
- DOI:10.1016/j.tsf.2023.140176
- 发表时间:2024
- 期刊:
- 影响因子:2.1
- 作者:Agusutrisno M
- 通讯作者:Agusutrisno M
Measuring interfacial Dzyaloshinskii-Moriya interaction in ultrathin magnetic films
- DOI:10.1103/revmodphys.95.015003
- 发表时间:2023-03-22
- 期刊:
- 影响因子:44.1
- 作者:Kuepferling, M.;Casiraghi, A.;Carlotti, G.
- 通讯作者:Carlotti, G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Marrows其他文献
Christopher Marrows的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Marrows', 18)}}的其他基金
Quantum spin Hall effect spintronics
量子自旋霍尔效应自旋电子学
- 批准号:
EP/T034343/1 - 财政年份:2021
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
Current-driven domain wall motion and magnetomemristance in FeRh-based nanostructures
FeRh 基纳米结构中电流驱动的畴壁运动和磁阻
- 批准号:
EP/M018504/1 - 财政年份:2015
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
Artificial Spin Ice: Designer Matter Far From Equilibrium
人造旋转冰:设计问题远离平衡
- 批准号:
EP/L00285X/1 - 财政年份:2014
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
Studies of Artificial Spin Ice at Brookhaven and Lawrence Berkeley National Laboratories
布鲁克海文和劳伦斯伯克利国家实验室的人造旋转冰研究
- 批准号:
EP/J021482/1 - 财政年份:2012
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
UK-Japanese Collaboration on Current-Driven Domain Wall Dynamics
英日在电流驱动畴壁动力学方面的合作
- 批准号:
EP/J000337/1 - 财政年份:2011
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
Spin-Torque and Spin Polarisation in Epitaxial Magnetic Silicides
外延磁性硅化物中的自旋扭矩和自旋极化
- 批准号:
EP/J007110/1 - 财政年份:2011
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
Spin-Polarised Tunnelling in Magnetic Nanostructures: A UK-China Collaboration
磁性纳米结构中的自旋极化隧道:中英合作
- 批准号:
EP/H001875/1 - 财政年份:2010
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
Current-Driven Domain Wall Motion in Multilayer Nanowires
多层纳米线中电流驱动的畴壁运动
- 批准号:
EP/I011668/1 - 财政年份:2010
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
MATERIALS WORLD NETWORK The Magnetostructural Response in Heterostructured Systems: a US - UK Collaboration
MATERIALS WORLD NETWORK 异质结构系统中的磁结构响应:美国 - 英国合作
- 批准号:
EP/G065640/1 - 财政年份:2009
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
相似国自然基金
基于过渡金属硫代磷酸物的二维反铁磁性异质结的光学与光电性质研究
- 批准号:62275225
- 批准年份:2022
- 资助金额:59 万元
- 项目类别:面上项目
拓扑反铁磁性及其输运表现
- 批准号:
- 批准年份:2021
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
透射电镜中原子面分辨(反)铁磁性测量方法的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
(SrIrO3)1/(SrTiO3)2超晶格中晶体结构和磁场可控反铁磁性的外延应变调控
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
质量不平等强关联电子系统中非平衡量子效应的研究
- 批准号:11904143
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Antiferromagnetic Skyrmions in Multi-metal Nitride thin films
多金属氮化物薄膜中的反铁磁斯格明子
- 批准号:
22KJ1581 - 财政年份:2023
- 资助金额:
$ 103.93万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Imaging skyrmions in synthetic antiferromagnetic multilayers
合成反铁磁多层膜中的斯格明子成像
- 批准号:
2604464 - 财政年份:2021
- 资助金额:
$ 103.93万 - 项目类别:
Studentship
Synthetic Antiferromagnetic Skyrmions
合成反铁磁斯格明子
- 批准号:
EP/T006811/1 - 财政年份:2020
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
Skyrmions in antiferromagnetic and highly anisotropic environments
反铁磁和高度各向异性环境中的斯格明子
- 批准号:
403502758 - 财政年份:2018
- 资助金额:
$ 103.93万 - 项目类别:
Priority Programmes