Enhanced Multiscale Boiling Surfaces (EMBOSS): From Fundamentals to Design

增强型多尺度沸腾表面 (EMBOSS):从基础知识到设计

基本信息

  • 批准号:
    EP/S019502/1
  • 负责人:
  • 金额:
    $ 72.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Boiling phenomena are central to heating and cooling duties in many industries, such as cooling and refrigeration, power generation, and chemical manufacture. Limitations to boiling heat transfer arise through surface dry-out at high heat flux, leading to localised hot-spots on heat transfer surfaces and larger equipment requirements. Whilst this is a significant problem for many industries, it becomes even more of an issue when dealing with small-scale systems, such as those used for cooling of microelectronics, where failure to remove heat effectively leads to localised overheating and potential damage of components. Spatially non-uniform and unsteady dissipative heat generation in such systems is detrimental to their performance and longevity. The effective heat exchanger area is of order sq. cm, with heat fluxes of order MW/sqm. This requires a transformative, step-change, beyond the current state-of-the-art for cooling heat fluxes between 2-15 MW/sqm at local "hot spots" to prevent burn out.A number of attempts have already been made to extend the upper boundary for the heat flux through alteration of surface characteristics with the aim of improved nucleation of vapour bubbles, bubble detachment, and subsequent rewetting of the surface by liquid. Despite the progress made, previous work on surfaces for pool- (and potentially flow-) boiling does not involve a rational approach for developing optimal surface topography. For instance, nucleate boiling heat transfer (NBHT) decreases with increasing wettability, and the designer must consider the nucleation site density, associated bubble departure diameter, and frequency related to the surface structure and fluid phase behaviour. For high surface wettability, the smaller-scale surface structure characteristics (e.g. cavities) can act as nucleation sites; for low wettability, the cavity dimensions, rather than its topology, will dominate. Therefore, characterising surfaces in terms of roughness values is insufficient to account for the changes in the boiling curve: the fluid-surface coupling must be studied in detail for the enhancement of NBHT and the critical heat flux.EMBOSS brings together a multi-disciplinary team of researchers from Brunel, Edinburgh, and Imperial, and six industrial partners and a collaborator (Aavid Thermacore, TMD ltd, Oxford Nanosystems, Intrinsiq Materials, Alfa Laval, CALGAVIN, and OxfordLasers) with expertise in cutting-edge micro-fabrication, experimental techniques, and molecular-, meso- and continuum-scale modelling and simulation. The EMBOSS framework will inform the rational design, fabrication, and optimisation of operational prototypes of a pool-boiling thermal management system. Design optimality will be measured in terms of materials and energy savings, heat-exchange equipment efficiency and footprint, reduction of emissions, and process sustainability. The collaboration with our partners will ensure alignment with the industrial needs, and will accelerate technology transfer to industry. These partners will provide guidance and advice through the project progress meetings, which some of them will also host. In addition, Alfa Laval will provide brazed heat exchangers as condensers for the experimental work, Intrinsiq will provide copper ink for coating surfaces and Oxford nanoSystems will provide nano-structured surface coatings. The project will integrate the challenges identified by EPSRC Prosperity Outcomes and the Industrial Strategy Challenge Fund in Energy (Resilient Nation), manufacturing and digital technologies (Resilient Nation, Productive Nation), as areas to drive economic growth.
沸腾现象对于许多行业(例如冷却和制冷,发电和化学制造商)的供暖和制冷职责至关重要。沸腾热传递的局限性是通过在高热通量下的表面干燥而出现的,导致热传递表面和较大设备要求上的局部热点。尽管对于许多行业来说,这是一个重大问题,但在处理小型系统时,它甚至是用于冷却微电子的系统时,它甚至是一个问题,在这种系统中,这种系统无法有效去除热量会导致局部过热和组件的潜在损害。在这种系统中,在空间上不均匀和不稳定的耗散热产生对它们的性能和寿命有害。有效的热交换器面积为阶平方CM,带有MW/SQM的热通量。这需要一个变革性的,阶梯变化,超出了当前的最新最新,用于在本地“热点”处冷却2-15 mW/sqm之间的热通量以防止燃烧。尽管取得了进展,但先前在池(以及潜在的流动)沸腾表面上的工作并不涉及开发最佳表面形象的合理方法。例如,成核沸腾的传热(NBHT)随着润湿性的提高而降低,设计师必须考虑成核位点密度,相关的气泡出发直径以及与表面结构和流体相关相关的频率。对于高表面润湿性,较小的表面结构特征(例如腔)可以充当成核位点。对于低润湿性,腔尺寸而不是其拓扑结构将占主导地位。 Therefore, characterising surfaces in terms of roughness values is insufficient to account for the changes in the boiling curve: the fluid-surface coupling must be studied in detail for the enhancement of NBHT and the critical heat flux.EMBOSS brings together a multi-disciplinary team of researchers from Brunel, Edinburgh, and Imperial, and six industrial partners and a collaborator (Aavid Thermacore, TMD ltd,牛津纳米系统,Intrinsiq材料,Alfa Laval,Calgavin和OxfordLasers)具有尖端微型制作,实验技术以及分子,中,中,中间和连续性规模的建模和仿真方面的专业知识。压纹框架将为泳池燃烧热管理系统的操作原型的合理设计,制造和优化提供信息。设计最佳性将以材料和节能,热量交换设备效率和足迹,减少排放和处理可持续性来衡量。与我们的合作伙伴的合作将确保与工业需求保持一致,并将加速技术转移到行业。这些合作伙伴将通过项目进度会议提供指导和建议,其中一些人也将举办。此外,阿尔法·拉瓦尔(Alfa Laval)将为实验性工作提供悬挂的热交换器,Intrinsiq将为涂层表面提供铜墨水,牛津纳米系统将提供纳米结构的表面涂层。该项目将将EPSRC繁荣成果确定的挑战与能源工业战略挑战基金(弹性国家),制造业和数字技术(富有弹性国家,生产力国家)作为推动经济增长的领域。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diffuse Interface Method for Nucleate Boiling Simulations
用于核沸腾模拟的扩散界面方法
  • DOI:
    10.11159/icmfht22.159
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minozzi G
  • 通讯作者:
    Minozzi G
Bubble growth on a smooth metallic surface at atmospheric and sub-atmospheric pressure
大气压和负压下光滑金属表面上的气泡生长
Bubble growth models in saturated pool boiling of water on a smooth metallic surface: Assessment and a new recommendation
光滑金属表面饱和水池沸腾中的气泡生长模型:评估和新建议
Saturated Nucleate Boiling with HFE-7100 on a Plain Smooth Copper Surface
Bubble Growth in Saturated Pool Boiling of Water on a Smooth Surface
光滑表面上饱和水池沸腾的气泡生长
  • DOI:
    10.11159/icmfht22.143
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mahmoud M
  • 通讯作者:
    Mahmoud M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tassos Karayiannis其他文献

Tassos Karayiannis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tassos Karayiannis', 18)}}的其他基金

Spray cooling high power dissipation applications (SANGRIA): From Fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础知识到设计
  • 批准号:
    EP/X015335/1
  • 财政年份:
    2024
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Research Grant
Boiling Flows in Small and Microchannels (BONSAI): From Fundamentals to Design
小通道和微通道中的沸腾流 (BONSAI):从基础知识到设计
  • 批准号:
    EP/T033045/1
  • 财政年份:
    2021
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Research Grant
Flow Boiling and Condensation of Mixtures in Microscale
微尺度混合物的流动沸腾和冷凝
  • 批准号:
    EP/N011112/1
  • 财政年份:
    2016
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Research Grant
Boiling in Microchannels: integrated design of closed-loop cooling system for devices operating at high heat fluxes
微通道沸腾:高热通量设备闭环冷却系统集成设计
  • 批准号:
    EP/K011502/1
  • 财政年份:
    2013
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Research Grant
Boiling and Condensation in Microchannels
微通道中的沸腾和冷凝
  • 批准号:
    EP/D500095/1
  • 财政年份:
    2006
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Research Grant

相似国自然基金

用于沸腾传热关键过程协同优化的仿生超浸润多尺度界面研究
  • 批准号:
    21902006
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
微纳复合结构高效毛细吸液机制及其对沸腾换热的强化机理研究
  • 批准号:
    51906191
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
有机工质管内相分布调控强化沸腾传热机理研究
  • 批准号:
    51906231
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
朝下多尺度结构表面的临界沸腾换热研究
  • 批准号:
    51706068
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
梯度金属泡沫内流动沸腾传热机理研究
  • 批准号:
    51576126
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
  • 批准号:
    2347627
  • 财政年份:
    2024
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Standard Grant
Enhanced Multiscale Boiling Surfaces (EMBOSS): From Fundamentals to Design
增强型多尺度沸腾表面 (EMBOSS):从基础知识到设计
  • 批准号:
    EP/S019588/1
  • 财政年份:
    2019
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Research Grant
Enhanced Multiscale Boiling Surfaces (EMBOSS): From Fundamentals to Design
增强型多尺度沸腾表面 (EMBOSS):从基础知识到设计
  • 批准号:
    EP/S019545/1
  • 财政年份:
    2019
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Research Grant
EAGER: Innovative 3-D, multiscale flow-boiling wick
EAGER:创新的 3-D、多尺度流动沸腾芯
  • 批准号:
    1623572
  • 财政年份:
    2016
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Standard Grant
Research Initiation Award - Experimental and Multiscale Simulation Study of Nanoscale Thermal Transport and Evaporation/Boiling Heat Transfer using Self-assembled Nanoemulsions
研究启动奖 - 使用自组装纳米乳液进行纳米级热传输和蒸发/沸腾传热的实验和多尺度模拟研究
  • 批准号:
    1601156
  • 财政年份:
    2016
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了