CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement

CDS

基本信息

  • 批准号:
    2347627
  • 负责人:
  • 金额:
    $ 67.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Novel high-power electronics, refrigeration systems and power generation equipment are being developed to revolutionize the technological foundations of industry. Dissipation of excessively high levels of heat generated in these applications is a fundamental bottleneck in their practical use. One potential method to resolve this issue is to use boiling of heat transfer fluids, which takes advantage of high energies associated with converting liquid to vapor and the accompanying liquid agitation. However, the current studies on the search for high performance heat transfer fluids rely mainly on empirical trial and error approaches and are focused on the use of refrigerants. The principal aim of this project is to explore the use of microemulsions as the boiling fluid, and to create a rational design framework for microemulsion boiling using an integrated computational and experimental approach. This project plans to study the causes of the enhancement in microemulsion boiling in order to further improve and deploy microemulsions in practical settings. The project will also encompass significant educational and outreach activities, involve minority students and art-in-science displays featuring microemulsion boiling experiments and simulations.The goal of this project is to develop a comprehensive picture of microemulsion boiling and use that information to design new and improved microemulsions for thermal management applications. It is currently not known why microemulsion boiling exhibits great order and regularity in bubble formation and growth and how bubbles grow to a very large size yet remain attached to the surface and still generate high heat fluxes at the surface. The project seeks to fill this knowledge gap by creating a rational design framework for studying microemulsion boiling based on closely coordinated simulation and experimental efforts. The simulation effort is focused on deploying leading edge, high accuracy computational methods (both existing and new methods proposed in this project) on a state-of-the-art open-source, massively parallel, GPU enabled continuum scale simulation framework. Experiments will be used to (i) guide the development of new computational methods and physics models, (ii) validate the numerical solver using matched experimental conditions, (iii) prepare new microemulsions with desirable properties suggested by the numerical simulations and (iv) finally validate the predicted enhancement in heat transfer using the new microemulsions. This integrated computational and experimental approach will (i) elucidate new physical mechanisms in microemulsion boiling, (ii) delineate which thermophysical properties of microemulsions need to be tuned for improved thermal performance, and (iii) engineer new microemulsions in the laboratory with desirable thermophysical properties. This approach is expected to yield unprecedented understanding on microemulsion boiling and impact thermal management of electronics/optoelectronics and industrial heat exchanger and distributed heating systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新型高功率电子设备、制冷系统和发电设备正在开发中,以彻底改变工业的技术基础。这些应用中产生的过高热量的耗散是其实际使用的基本瓶颈。解决这个问题的一种可能方法是使用传热流体的沸腾,它利用与将液体转化为蒸汽以及伴随的液体搅拌相关的高能量。然而,目前寻找高性能传热流体的研究主要依赖于经验试错法,并且集中于制冷剂的使用。该项目的主要目的是探索微乳液作为沸腾流体的用途,并使用集成的计算和实验方法创建微乳液沸腾的合理设计框架。该项目计划研究微乳液沸腾增强的原因,以进一步改进微乳液并将其应用到实际环境中。该项目还将包括重要的教育和外展活动,让少数族裔学生参与,并以微乳液沸腾实验和模拟为特色的科学艺术展示。该项目的目标是全面了解微乳液沸腾,并利用该信息设计新的和改进的热管理应用微乳液。目前尚不清楚为什么微乳液沸腾在气泡形成和生长方面表现出良好的有序性和规律性,以及气泡如何生长到非常大的尺寸但仍然附着在表面并仍然在表面产生高热通量。该项目旨在通过紧密协调的模拟和实验工作,创建一个用于研究微乳液沸腾的合理设计框架,从而填补这一知识空白。 仿真工作的重点是在最先进的开源、大规模并行、支持 GPU 的连续规模仿真框架上部署领先的高精度计算方法(包括本项目中提出的现有方法和新方法)。实验将用于(i)指导新计算方法和物理模型的开发,(ii)使用匹配的实验条件验证数值求解器,(iii)制备具有数值模拟建议的理想性能的新微乳液,以及(iv)最后使用新的微乳液验证预测的传热增强。这种综合计算和实验方法将(i)阐明微乳液沸腾的新物理机制,(ii)描述需要调整微乳液的哪些热物理性质以提高热性能,以及(iii)在实验室中设计具有理想热物理性质的新微乳液。这种方法有望对电子/光电子、工业热交换器和分布式加热系统的微乳液沸腾和影响热管理产生前所未有的理解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir Riaz其他文献

Influence of High-Performance Work System on Employee Service Performance and OCB: The Mediating Role of PsyCap
高绩效工作系统对员工服务绩效与OCB的影响:PsyCap的中介作用
  • DOI:
    10.5296/ieb.v5i2.15009
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kashif Nadeem;Amir Riaz;Yasir Iftikhar;Muhammad Bilal Ahmad;Waqas Shamshad
  • 通讯作者:
    Waqas Shamshad
Nonlinear stability of gravitationally unstable, transient, diffusive boundary layers in porous media
多孔介质中重力不稳定、瞬态、扩散边界层的非线性稳定性
  • DOI:
    10.1017/jfm.2014.72
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Nils Tilton;Amir Riaz
  • 通讯作者:
    Amir Riaz
Improving Knowledge Acquisition from Informational Websites: A NeuroIS Study
改善信息网站知识获取: NeuroIS 研究

Amir Riaz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amir Riaz', 18)}}的其他基金

2019 Summer Research School on Fluid Dynamics
2019年夏季流体动力学研究学校
  • 批准号:
    1901560
  • 财政年份:
    2019
  • 资助金额:
    $ 67.97万
  • 项目类别:
    Standard Grant

相似国自然基金

多源数据约束下的大尺度河道形状建模方法研究
  • 批准号:
    42371481
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
面向精尺度森林冠层-林下分层物候提取的GEDI-MODIS-Landsat多源遥感数据融合方法研究
  • 批准号:
    42301383
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
联合静止与极轨卫星数据的多尺度自洽逐日FPAR估算研究
  • 批准号:
    42371402
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
基于数据驱动降阶模型的三维机织复合材料冲击失效多尺度分析
  • 批准号:
    12302163
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据机理双驱动下的多尺度概率损伤容限评定研究
  • 批准号:
    52375154
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: CAS-Climate: Multiscale Data and Model Synthesis Informed Approach for Assessing Climate Resilience of Crop Production Systems
职业:CAS-气候:用于评估作物生产系统气候适应能力的多尺度数据和模型综合知情方法
  • 批准号:
    2339529
  • 财政年份:
    2024
  • 资助金额:
    $ 67.97万
  • 项目类别:
    Continuing Grant
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 67.97万
  • 项目类别:
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
  • 批准号:
    2327862
  • 财政年份:
    2023
  • 资助金额:
    $ 67.97万
  • 项目类别:
    Continuing Grant
Personalized risk assessment in Neurofibromatosis Type 1
1 型神经纤维瘤病的个性化风险评估
  • 批准号:
    10621489
  • 财政年份:
    2023
  • 资助金额:
    $ 67.97万
  • 项目类别:
Systems Approaches to Understanding the Impact of Cell-Cell Fusion on Therapeutic Resistance
了解细胞间融合对治疗耐药性影响的系统方法
  • 批准号:
    10607123
  • 财政年份:
    2023
  • 资助金额:
    $ 67.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了