Quietening ultra-low-loss SiC & GaN waveforms
静音超低损耗 SiC
基本信息
- 批准号:EP/R029504/1
- 负责人:
- 金额:$ 252.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Power electronics reduces our carbon footprint and contributes nearly £50bn per year to the UK economy and supports 82,000 skilled jobs in over 400 UK-based companies. Power electronic converters regulate the flow of power in most electrical devices, in electric vehicles etc. They do so by switching currents on and off, 10s of thousands of times per second, and the ratio of on-time to off-time determines the power flow. The efficiency, size, and weight of these converters are determined by the amount of waste heat generated. For example, the size of laptop power adapters has shrunk over the years, due to their increase in efficiency. In an electric car, waste heat causes power converters to be typically larger than the motors they are feeding. This heat is mostly produced in the instances when the transistors are switching. The power electronics industry is about to undergo significant change, as ultra-fast-transition transistors made from silicon carbide (SiC) or gallium nitride (GaN) have recently emerged. Their switching transitions are so short (below 10 nanoseconds) that, in principle, efficiency can be pushed to levels never achieved before. This could lead to a ten-fold miniaturisation, leading to converters that are much smaller than the motor being driven, or credit-card-sized laptop power adapters.The fast switching, however, comes with the downside of extreme electromagnetic noise, and industry is struggling to adopt these new technologies. Our project will provide answers to key uncertainties for adoption of these new technologies, namely how to drive the SiC and GaN power devices quickly, safely and quietly.The electromagnetic noise (EMI) is seen on an oscilloscope as sharp corners, rapid oscillations, and overshoot spikes, during the switching transitions.In this project, we are developing solutions to achieve clean switching, without these undesirable features, to quieten the EMI. These features are countered by feeding specially-shaped signals into the transistors' gates. The switching transition is too fast for any known signal generators and closed-loop control methods, or passive switching-aid (filtering) circuits to provide the required shaping of gate signals. Therefore, an alternative approach is adopted.We recently developed a chip that can adjust its current output every 100 picoseconds, i.e. the time it takes light to travel 3 cm. It is the only known driver chip that can interact frequently enough with a gate signal to shape these short sub-10 nanosecond switching transitions. We will create improved versions of this driver to drive gallium nitride and silicon carbide transistor gates with signals that are designed to soften the switching and cancel out unwanted high-frequency effects. The signals need to be changed automatically as the converter temperature changes, and when changes to its output power are requested. Also, each type of circuit requires slightly different signals. Therefore, automatic adaptation will be developed to simplify the use of this technology by industry. An interesting challenge is the safe generation of optimised gate signals, as the wrong signal can cause a power converter to fail. Another challenge is the regeneration of energy put into the gate, so that it can be used for the next switching event.The project develops microelectronics (high-speed, EMI-quietening gate drivers) and power electronics (converters and control systems). Industry advisors from 8 partner companies will steer the development for three years. In Year 4, the research is scaled down, and trials in UK-based industry set up to transfer knowhow, test the research, and provide new avenues for fundamental research.This research will help maintain the compatibility between emerging high-efficiency power electronics and modern ultra-low-power microelectronics that is increasingly susceptible to electromagnetic noise, and simplify and expedite industry adoption of SiC & GaN.
Power Electronics减少了我们的碳足迹,每年为英国经济贡献了近500亿英镑,并为400多家英国公司提供了82,000个熟练的工作。电源电子转换器调节大多数电动设备,电动汽车等的功率流。它们通过打开和关闭电流,每秒10倍的电流来调节电源。这些转换器的效率,大小和重量取决于产生的废热量。例如,由于效率的提高,笔记本电脑电源适配器的规模已缩小。在电动汽车中,废热会导致电源转换器通常比供给电动机大。这种热量主要是在晶体管切换的情况下产生的。电力电子行业将经历重大变化,因为最近出现了由碳化硅(SIC)或氮化岩(GAN)制成的超快速过渡晶体管(GAN)。他们的切换过渡是如此短(低于10纳秒以下),以至于可以将效率推向以前从未达到的水平。这可能会导致十倍的小型化,从而导致转换器要比被驱动的电机或信用卡大小的笔记本电脑电源适配器小得多。但是,快速切换伴随着极端电磁噪声的缺点,行业正在努力采用这些新技术。 Our project will provide answers to key uncertainties for adoption of these new technologies, namely how to drive the SiC and GaN power devices quickly, safe and quietly.The electromagnetic noise (EMI) is seen on an oscilloscope as sharp corners, rapid oscillations, and overshoot spikes, during the switching transitions.In this project, we are developing solutions to achieve clean switching, without these undesirable features, to quiet the EMI.通过将特殊形状的信号馈入晶体管大门,可以抵消这些功能。对于任何已知的信号发生器和闭环控制方法,或被动开关-AID(过滤)电路,开关转换太快了,无法提供门信号的所需形状。因此,采用了一种替代方法。我们最近开发了一个芯片,可以每100秒钟一次调整其当前输出,即行驶3厘米所需的时间。它是唯一已知的驱动器芯片,可以与栅极信号经常相互作用,以形成这些短次10纳秒切换过渡。我们将创建该驱动器的改进版本,以驱动氮化炮和碳化硅变压器门,并具有旨在软化开关并取消不需要的高频效果的信号。随着转换器温度的变化,以及请求更改其输出功率时,需要自动更改信号。同样,每种电路都需要略有不同的信号。因此,将开发自动改编,以简化行业对该技术的使用。一个有趣的挑战是安全生成优化的门信号,因为错误的信号会导致电源转换器故障。另一个挑战是将能量的再生放入大门,以便将其用于下一个切换事件。该项目开发微电子(高速,Emi Quietening Gate驱动程序)和电力电子设备(转换器和控制系统)。来自8家合作伙伴公司的行业顾问将引导开发工作三年。在第4年,研究缩小了研究,并在英国的行业中进行了试验,以转移知识,测试研究并为基础研究提供新的途径。这项研究将有助于维持新兴的高效电力电子设备与现代超低波动微电源之间的兼容性,这些微电源越来越易于电子噪音,并简化了SICITIES和Expedite Cermution和Expedite Craytion和Exceedite和Exceedite和Exceedite和Exceedite&Exceedite&Exceedite&ExceedIn&ExceedIn&Gan。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probing Techniques for GaN Power Electronics: How to Obtain 400+ MHz Voltage and Current Measurement Bandwidths without Compromising PCB Layout
GaN 电力电子探测技术:如何在不影响 PCB 布局的情况下获得 400 MHz 电压和电流测量带宽
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Harry C. P. Dymond
- 通讯作者:Harry C. P. Dymond
Rapid Co-Optimisation of Turn-On and Turn-Off Gate Resistor Values in DC:DC Power Converters
DC:DC 电源转换器中开通和关断栅极电阻值的快速协同优化
- DOI:10.1109/ecce.2018.8558406
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Dymond H
- 通讯作者:Dymond H
A New Torque Ripple Minimization Approach for Switched Reluctance Drives
开关磁阻驱动器的新型扭矩纹波最小化方法
- DOI:10.1109/oncon56984.2022.10126516
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Abdel-Aziz A
- 通讯作者:Abdel-Aziz A
Stretching in Time of GaN Active Gate Driving Profiles to Adapt to Changing Load Current
延长 GaN 有源栅极驱动曲线的时间以适应不断变化的负载电流
- DOI:10.1109/ecce.2018.8557531
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Dalton J
- 通讯作者:Dalton J
Load Characterization in High-Frequency IPT Systems Using Class EF Switching Waveforms
使用 EF 类开关波形的高频 IPT 系统中的负载表征
- DOI:10.1109/tpel.2021.3074751
- 发表时间:2021
- 期刊:
- 影响因子:6.7
- 作者:Arteaga J
- 通讯作者:Arteaga J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernard Stark其他文献
Mesenteric chylous cyst
- DOI:
10.1016/j.gie.2005.06.064 - 发表时间:
2006-03-01 - 期刊:
- 影响因子:
- 作者:
Ari Wiesen;Kostas Sideridis;Bernard Stark;Simmy Bank - 通讯作者:
Simmy Bank
Electrothermal Power Cycling to Failure of Discrete Planar, Symmetrical Double-Trench and Asymmetrical Trench SiC MOSFETs
电热功率循环导致分立平面、对称双沟槽和非对称沟槽 SiC MOSFET 失效
- DOI:
10.1109/ojpel.2023.3326909 - 发表时间:
2023 - 期刊:
- 影响因子:5.8
- 作者:
Juefei Yang;S. Jahdi;Renze Yu;Bernard Stark - 通讯作者:
Bernard Stark
Bernard Stark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernard Stark', 18)}}的其他基金
High-Bandwidth Sensing for Wide-bandgap Power Conversion
用于宽带隙功率转换的高带宽传感
- 批准号:
EP/W021315/1 - 财政年份:2023
- 资助金额:
$ 252.3万 - 项目类别:
Research Grant
SAVVIE: Staying alive in variable, intermittent, low-power environments
SAVVIE:在多变、间歇性、低功耗环境中保持活力
- 批准号:
EP/K011979/1 - 财政年份:2013
- 资助金额:
$ 252.3万 - 项目类别:
Research Grant
Pulse quietening at source for higher-frequency power and signal switching
在源头进行脉冲静噪,以实现更高频率的电源和信号切换
- 批准号:
EP/K021273/1 - 财政年份:2013
- 资助金额:
$ 252.3万 - 项目类别:
Research Grant
Next Generation Energy-Harvesting Electronics - holistic approach 1763
下一代能量收集电子设备 - 整体方法 1763
- 批准号:
EP/G06881X/1 - 财政年份:2010
- 资助金额:
$ 252.3万 - 项目类别:
Research Grant
相似国自然基金
高性能纤维混凝土构件抗爆的强度预测
- 批准号:51708391
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
- 批准号:31471690
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
超高频超宽带系统射频基带补偿理论与技术的研究
- 批准号:61001097
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
- 批准号:60976066
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 252.3万 - 项目类别:
Standard Grant
Ultra-low noise magnetic environments
超低噪声磁场环境
- 批准号:
ST/Y509978/1 - 财政年份:2024
- 资助金额:
$ 252.3万 - 项目类别:
Research Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 252.3万 - 项目类别:
Continuing Grant
Ultra Low Phase Noise Analysis & Measurement
超低相位噪声分析
- 批准号:
10089379 - 财政年份:2024
- 资助金额:
$ 252.3万 - 项目类别:
Collaborative R&D
Implementing VVC codec in WebRTC video conferencing and Ultra Low Latency CDN for reduced network footprint
在 WebRTC 视频会议和超低延迟 CDN 中实施 VVC 编解码器,以减少网络占用
- 批准号:
10114427 - 财政年份:2024
- 资助金额:
$ 252.3万 - 项目类别:
Collaborative R&D