High-Bandwidth Sensing for Wide-bandgap Power Conversion
用于宽带隙功率转换的高带宽传感
基本信息
- 批准号:EP/W021315/1
- 负责人:
- 金额:$ 146.62万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project develops new sensing technology for use in power electronic systems, helping the UK to better compete with global leaders in power electronics. Power electronics is a key electrification technology: it is needed in electric vehicles, renewable energy generation, our electricity grid, and anywhere where the flow of power needs to be accurately dosed. This dosing is carried out by rapidly switching currents on and off to create the desired average. This technology reduces our carbon footprint and contributes nearly £50bn per year to the UK economy and supports 82,000 skilled jobs in over 400 UK-based companies (2016 data).The power electronics industry is undergoing significant change, as ultra-fast transistors made from silicon carbide (SiC) or gallium nitride (GaN) have recently emerged, to replace silicon transistors.These new transistors switch 10x faster, which results in 75% less energy being lost in power converters, and enables converters to be shrunk to less than half their previous size. This makes it much easier to build them into other systems, e.g. electric vehicles, resulting in lighter cars with more space for batteries.This project is about helping to maximise the potential of the new transistors. Many companies are struggling to adopt them, because whilst the very fast switching provides the benefits of improved efficiency and radically smaller system size, it also creates problems with electromagnetic interference, and device and system reliability. The transistors switch current on or off so fast (in less than ten nanoseconds, the time it takes light to travel 3 meters), that engineers cannot accurately measure how the voltages and currents change during this time, even with their best equipment, which means it is difficult to fix problems such as interference. Because of this, even the leading companies are slowing down these new transistors, and losing some of their efficiency potential.Our project develops small, low-cost sensors, that make these nanosecond-scale changes visible. They will allow engineers to see exactly how the transistors are switching, helping them develop better, smaller, lighter, and more reliable power electronics. They will allow computer-controlled SiC and GaN power converters to sense when they are creating too much electromagnetic noise, and reduce this by switching more intelligently. It will allow power circuits to detect external short circuits and isolate these before they damage the power converter. We are also developing sensors that provide engineers, or control systems, directly with information that they need (e.g. device temperature), rather than having to infer this indirectly from volts and amps, making the measurements faster and more efficient.The sensors work by detecting electric or magnetic fields via coils, conductive plates, or antennas. The received signal is fed into a chip inside the sensor that computes the required parameter. These new SiC and GaN transistors have made small field sensors on circuit boards viable for the first time, because as signal speeds increase, the wavelengths of these signals become shorter (cm-scale), meaning that their fields can be picked up with millimetre-size coils or antennas. In order to ensure that we develop what industry needs, we are working with 12 partners across automotive, renewable energy, semiconductors, commercial R&D organisations with deep sector experience, and we are accepting new collaborators on request. Our project provides partners and other UK companies and universities with sample sensors. Their feedback, and discussions with partners helps us prioritise our research, and ensures that we are using our research funds to solve the most important problems. We are providing workshops to help keep engineers up-to-date with advanced measurement techniques, and keeping our results online (publications and a dedicated website) for companies to use as desired.
该项目开发了用于电力电子系统中的新灵敏度技术,帮助英国更好地与电力电子领域的全球领导者竞争。电力电子是一项关键的电气技术:在电动汽车,可再生能源产生,我们的电网以及需要准确给予电力流的任何地方都需要它。通过快速打开和关闭电流以创建所需的平均水平来进行这种给药。 reduces our carbon footprint and contributes almost £50bn per year to the UK economy and supports 82,000 skilled jobs in over 400 UK-based companies (2016 data).The power electronics industry is undergoing significant change, as ultra-fast transistors made from silicon carbide (SiC) or gallium nitride (GaN) have recently emerged, to replace silicon transistors.These new transistors switch 10x faster, which results in功率转换器中损失的能量减少了75%,使转换器的缩小到以前的尺寸不到一半。这使得将它们构建到其他系统中变得更加容易,例如电动汽车,导致较轻的汽车,有更多的电池空间。该项目旨在帮助最大化新晶体管的潜力。许多公司都在努力采用它们,因为尽管非常快速的切换提供了提高效率和完全较小的系统尺寸的好处,但它还带来了电子干扰以及设备和系统可靠性的问题。晶体管开关电流如此之快(在不到十纳秒的时间内,光线需要3米的时间),工程师无法准确测量在这段时间内的电压和电流如何变化,即使使用最佳设备,这意味着很难解决诸如干扰的问题。因此,即使是领先的公司也在减慢这些新晶体管的速度,并失去了一些效率的潜力。我们的项目开发了小型低成本的传感器,使这些纳秒尺度的变化可见。他们将允许工程师准确地看到晶体管的切换方式,从而帮助它们发展更好,更小,更轻,更可靠的电力电子设备。它们将允许计算机控制的SIC和GAN POWER转换器在产生过多的电子噪声时感知他们,并通过更智能地切换来减少它。它将允许电路检测外部短路并隔离它们,然后再损坏电源转换器。我们还开发了直接提供工程师或控制系统的传感器,直接提供所需的信息(例如设备温度),而不必从伏特和放大器中间接推断出此信息,从而使测量值更快,更有效。传感器通过线圈检测电场或磁场来工作,从而通过线圈,导电板或固定板进行操作。接收的信号被馈入传感器内部的芯片,该芯片计算所需参数。这些新的SIC和GAN晶体管使电路板上的小场传感器首次可行,因为随着信号速度的增加,这些信号的波长变短(CM尺度),这意味着可以使用毫米尺寸的线圈或天线来拾取它们的磁场。为了确保我们发展行业需求,我们正在与12个合作伙伴合作,跨汽车,可再生能源,半导体,具有深厚行业经验的商业研发组织,我们正在根据要求接受新的合作者。我们的项目为合作伙伴和其他英国公司和大学提供了样本传感器。他们的反馈和与合作伙伴的讨论有助于我们确定研究的优先级,并确保我们使用研究资金来解决最重要的问题。我们正在提供研讨会,以帮助工程师通过高级测量技术保持最新状态,并保持我们的结果在线(出版物和专门的网站),供公司根据需要使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernard Stark其他文献
Mesenteric chylous cyst
- DOI:
10.1016/j.gie.2005.06.064 - 发表时间:
2006-03-01 - 期刊:
- 影响因子:
- 作者:
Ari Wiesen;Kostas Sideridis;Bernard Stark;Simmy Bank - 通讯作者:
Simmy Bank
Electrothermal Power Cycling to Failure of Discrete Planar, Symmetrical Double-Trench and Asymmetrical Trench SiC MOSFETs
电热功率循环导致分立平面、对称双沟槽和非对称沟槽 SiC MOSFET 失效
- DOI:
10.1109/ojpel.2023.3326909 - 发表时间:
2023 - 期刊:
- 影响因子:5.8
- 作者:
Juefei Yang;S. Jahdi;Renze Yu;Bernard Stark - 通讯作者:
Bernard Stark
Bernard Stark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernard Stark', 18)}}的其他基金
Quietening ultra-low-loss SiC & GaN waveforms
静音超低损耗 SiC
- 批准号:
EP/R029504/1 - 财政年份:2018
- 资助金额:
$ 146.62万 - 项目类别:
Research Grant
SAVVIE: Staying alive in variable, intermittent, low-power environments
SAVVIE:在多变、间歇性、低功耗环境中保持活力
- 批准号:
EP/K011979/1 - 财政年份:2013
- 资助金额:
$ 146.62万 - 项目类别:
Research Grant
Pulse quietening at source for higher-frequency power and signal switching
在源头进行脉冲静噪,以实现更高频率的电源和信号切换
- 批准号:
EP/K021273/1 - 财政年份:2013
- 资助金额:
$ 146.62万 - 项目类别:
Research Grant
Next Generation Energy-Harvesting Electronics - holistic approach 1763
下一代能量收集电子设备 - 整体方法 1763
- 批准号:
EP/G06881X/1 - 财政年份:2010
- 资助金额:
$ 146.62万 - 项目类别:
Research Grant
相似国自然基金
稀土/过渡金属掺杂六角相ZnS纳米晶可控合成、力致发光机理及传感应用研究
- 批准号:12374371
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
肠出血性大肠杆菌利用sRNA感应肠道环境信号、提高体内致病能力的分子机制的研究
- 批准号:82372267
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
表面接枝改性制备CaO-B2O3-C前驱体及感应加热合成CaB6的机理研究
- 批准号:52362008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
肝窦内皮细胞mTORC2-FoxO1轴调控机体铁感应的机制研究
- 批准号:32371229
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
等离激元增强的光活性纳米酶的设计合成及其在复杂体系中的传感应用研究
- 批准号:22364011
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 146.62万 - 项目类别:
Research Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
- 批准号:
2343469 - 财政年份:2024
- 资助金额:
$ 146.62万 - 项目类别:
Standard Grant
Probing the role of sensory cues in the regulation of bacterial biofilm development
探讨感觉线索在细菌生物膜发育调节中的作用
- 批准号:
10714322 - 财政年份:2023
- 资助金额:
$ 146.62万 - 项目类别:
Regulation and Manipulation of Innate Immunity During HIV Infection
HIV 感染期间先天免疫的调节和操纵
- 批准号:
10874020 - 财政年份:2023
- 资助金额:
$ 146.62万 - 项目类别:
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
- 批准号:
2304766 - 财政年份:2022
- 资助金额:
$ 146.62万 - 项目类别:
Standard Grant