Ultra-low noise magnetic environments
超低噪声磁场环境
基本信息
- 批准号:ST/Y509978/1
- 负责人:
- 金额:$ 64.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The aim of this proposal is to develop an environment where electric and magnetic fields are controlled at the level needed for the next generation of quantum sensors. These sensors are being developed both for commercial applications and for precision measurements that test fundamental theories of physics. To reach their ultimate sensitivity, they must operate in extremely low noise environments. Thus, our project is designed to remove a barrier that is now inhibiting progress in quantum technology and our ability to test new theories.Our objective is to design, develop and characterize a magnetically-shielded vacuum cell where the background magnetic field and magnetic noise are reduced to extremely low values. We aim to generate large electric fields inside this cell, without compromising the magnetic noise. This calls for careful choices of materials and construction methods and measurements of electric currents at the extreme limits of sensitivity. Finally, we aim to integrate magnetic field probes within the cell for in situ, real-time field measurement and control. The output will be an instrument capable of sensing tiny fields and forces beyond the current state of the art.One application of such an apparatus in fundamental science is to measure the roundness of the electron, which is measured through its electric dipole moment (eEDM). A non-zero eEDM indicates a violation of time-reversal symmetry, which is crucial in understanding why matter prevails over antimatter in the Universe. To dramatically improve the measurement precision, we have developed transformative techniques to produce trapped ultracold molecules. We have completed a design study of this approach where all the steps are simulated, and have demonstrated most of the key steps with a testbed molecule. The apparatus, which provides precisely controlled magnetic and electric fields, will be the crucial final piece of our new approach, facilitating future experiments to determine electron roundness with unprecedented precision, several hundred times better than before. Such measurements have the potential to discover new particles beyond the reach of particle colliders and shed light on the matter-antimatter asymmetry in the Universe.Beyond EDM experiments, the apparatus will benefit other tests of fundamental physics using quantum technologies. It will enhance experiments with atom interferometers to probe gravitational waves and ultra-light dark matter, and contribute to atomic clocks to measure varying fundamental constants. The collective efforts aim to unravel the mysteries of the Universe and gain deeper insights into its fundamental nature.
该提案的目的是开发一种环境,将电场和磁场控制在下一代量子传感器所需的水平。这些传感器的开发既可用于商业应用,也可用于测试物理基础理论的精密测量。为了达到最终的灵敏度,它们必须在极低噪音的环境中运行。因此,我们的项目旨在消除目前阻碍量子技术进步和我们测试新理论能力的障碍。我们的目标是设计、开发和表征磁屏蔽真空单元,其中背景磁场和磁噪声是降低到极低的值。我们的目标是在该细胞内产生大电场,而不影响磁噪声。这需要仔细选择材料和施工方法以及在灵敏度极限下测量电流。最后,我们的目标是将磁场探针集成到细胞内,以进行原位实时场测量和控制。输出将是一种能够感知微小场和力的仪器,超出了当前技术水平。这种仪器在基础科学中的一个应用是测量电子的圆度,这是通过其电偶极矩(eEDM)来测量的。非零 eEDM 表明违反了时间反转对称性,这对于理解宇宙中物质战胜反物质的原因至关重要。为了显着提高测量精度,我们开发了革命性技术来生产捕获的超冷分子。我们已经完成了这种方法的设计研究,其中所有步骤都被模拟,并通过测试平台分子演示了大多数关键步骤。该设备提供精确控制的磁场和电场,将成为我们新方法的关键最后一部分,有助于未来的实验以前所未有的精度确定电子圆度,比以前好数百倍。此类测量有可能发现粒子对撞机无法到达的新粒子,并揭示宇宙中物质与反物质的不对称性。除了 EDM 实验之外,该设备还将有利于使用量子技术进行基础物理的其他测试。它将增强原子干涉仪的实验,以探测引力波和超轻暗物质,并有助于原子钟测量不同的基本常数。集体努力的目的是揭开宇宙的奥秘,并更深入地了解其基本性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jongseok Lim其他文献
Quantum control in two-dimensional Fourier-transform spectroscopy
二维傅里叶变换光谱中的量子控制
- DOI:
10.1103/physreva.84.013425 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jongseok Lim;Han;Sangkyung Lee;Jaewook Ahn - 通讯作者:
Jaewook Ahn
Ultrafast Rabi flopping in a three-level energy ladder.
超快拉比在三级能梯中失败。
- DOI:
10.1364/ol.37.003378 - 发表时间:
2012 - 期刊:
- 影响因子:3.6
- 作者:
Jongseok Lim;Kanghee Lee;Jaewook Ahn - 通讯作者:
Jaewook Ahn
Ultrafast IR spectroscopic study of coherent phonons and dynamic spin–lattice coupling in multiferroic LuMnO3
多铁性 LuMnO3 中相干声子和动态自旋晶格耦合的超快红外光谱研究
- DOI:
10.1088/1367-2630/12/2/023017 - 发表时间:
2010 - 期刊:
- 影响因子:3.3
- 作者:
K. Jang;Jongseok Lim;Jaewook Ahn;Ji‐Hee Kim;K. Yee;J. Ahn;S. Cheong - 通讯作者:
S. Cheong
Effect of nonuniform continuum density of states on a Fano resonance in semiconductor quantum wells
非均匀连续态密度对半导体量子阱法诺共振的影响
- DOI:
10.1103/physrevb.80.035322 - 发表时间:
2009 - 期刊:
- 影响因子:3.7
- 作者:
Jongseok Lim;Woo;H. Sim;R. Averitt;J. Zide;A. Gossard;Jaewook Ahn - 通讯作者:
Jaewook Ahn
Strong-field two-photon transition by phase shaping
通过相位整形实现强场双光子跃迁
- DOI:
10.1103/physreva.82.023408 - 发表时间:
2010 - 期刊:
- 影响因子:2.9
- 作者:
Sangkyung Lee;Jongseok Lim;Jaewook Ahn;V. Hakobyan;S. Guérin - 通讯作者:
S. Guérin
Jongseok Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jongseok Lim', 18)}}的其他基金
Measuring the electron electric dipole moment using an array of ultracold molecules
使用超冷分子阵列测量电子电偶极矩
- 批准号:
ST/V00428X/1 - 财政年份:2021
- 资助金额:
$ 64.22万 - 项目类别:
Fellowship
相似国自然基金
树木源水难溶性成分低共熔溶剂复合溶出体系的可控构筑及其机理
- 批准号:22308077
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
- 批准号:32303021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
催化CO2加氢为低碳烯烃的介孔碳限域Fe系催化剂的可控构筑与调控机制研究
- 批准号:22378345
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于射频指纹物理特征的低轨卫星物联网增强安全认证技术研究
- 批准号:62302082
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Ultra Low Phase Noise Analysis & Measurement
超低相位噪声分析
- 批准号:
10089379 - 财政年份:2024
- 资助金额:
$ 64.22万 - 项目类别:
Collaborative R&D
Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
- 批准号:
10739049 - 财政年份:2023
- 资助金额:
$ 64.22万 - 项目类别:
The Realization of Next-Generation Integrated Millimeter-Wave Systems Based On Ultra-Low-Noise Frequency Synthesis Techniques
基于超低噪声频率合成技术的下一代集成毫米波系统的实现
- 批准号:
22KJ0659 - 财政年份:2023
- 资助金额:
$ 64.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of ultra-low-noise amplifier using spin maser in diamond for microwave quantum technologies
使用金刚石中的自旋微波激射器开发用于微波量子技术的超低噪声放大器
- 批准号:
23KJ2135 - 财政年份:2023
- 资助金额:
$ 64.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Ultra-low distortion and noise electronics to enable a clinical MPI imaging platform
超低失真和噪声电子器件支持临床 MPI 成像平台
- 批准号:
10761613 - 财政年份:2023
- 资助金额:
$ 64.22万 - 项目类别: