UK Quantum Technology Hub: NQIT - Networked Quantum Information Technologies
英国量子技术中心:NQIT - 网络量子信息技术
基本信息
- 批准号:EP/M013243/1
- 负责人:
- 金额:$ 4845.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Hub accelerates progress towards a new "quantum era" by engineering small, high precision quantum systems, and linking them into a network to create the world's first truly scalable quantum computing engine. This new computing platform will harness quantum effects to achieve tasks that are currently impossible.The Hub is an Oxford-led alliance of nine universities with complementary expertise in quantum technologies including Bath, Cambridge, Edinburgh, Leeds, Strathclyde, Southampton, Sussex and Warwick. We have assembled a network of more than 25 companies (Lockheed-Martin, Raytheon BBN, Google, AMEX), government labs (NPL, DSTL, NIST) and SMEs (PureLiFi, Rohde & Schwarz, Aspen) who are investing resources and manpower.Our ambitious flagship goal is the Q20:20 engine - a network of twenty optically-linked ion-trap processors each containing twenty quantum bits (qubits). This 400 qubit machine will be vastly more powerful than anything that has been achieved to date, but recent progress on three fronts makes it a feasible goal. First, Oxford researchers recently discovered a way to build a quantum computer from precisely-controlled qubits linked with low precision by photons (particles of light). Second, Oxford's ion-trap researchers recently achieved a new world record for precision qubit control with 99.9999% accuracy. Third, we recently showed how to control photonic interference inside small silica chips. We now have an exciting opportunity to combine these advances to create a light-matter hybrid network computer that gets the 'best of both worlds' and overcomes long-standing impracticalities like the ever increasing complexity of matter-only systems, or the immense resource requirements of purely photonic approaches.Engineers and scientists with the hub will work with other hubs and partners from across the globe to achieve this. At present proof-of-principle experiments exist in the lab, and the 'grand challenge' is to develop compact manufacturable devices and components to build the Q20:20 engine (and to make it easy to build more).We have already identified more than 20 spin-offs from this work, ranging from hacker-proof communication systems and ultra-sensitive medical and military sensors to higher resolution imaging systems.Quantum ICT will bring great economic benefits and offer technical solutions to as yet unsolveable problems. Just as today's computers allow jet designers to test the aerodynamics of planes before they are built, a quantum computer will model the properties of materials before they've been made, or design a vital drug without the trial and error process. This is called digital quantum simulation. In fact many problems that are difficult using conventional computing can be enhanced with a 'quantum co-processor'. This is a hugely desirable capability, important across multiple areas of science and technology, so much so that even the prospect of limited quantum capabilities (e.g. D-Wave's device) has raised great excitement. The Q20:20 will be an early form of a verifiable quantum computer, the uncompromised universal machine that can ultimately perform any algorithm and scale to any size; the markets and impacts will be correspondingly far greater.In addition to computing there will be uses in secure communications, so that a 'trusted' internet becomes feasible, in sensing - so that we can measure to new levels of precision, and in new components - for instance new detectors that allow us to collect single photons.The hub will ultimately become a focus for an emerging quantum ICT industry, with trained scientists and engineers available to address the problems in industry and the wider world where quantum techniques will be bringing benefits. It will help form new companies, new markets, and grow the UK's knowledge economy.
该中心通过设计小型高精度量子系统并将其连接到网络中以创建世界上第一个真正可扩展的量子计算引擎,从而加速迈向新“量子时代”的进程。这个新的计算平台将利用量子效应来实现目前不可能完成的任务。该中心是一个由牛津大学领导的联盟,由九所大学组成,这些大学在量子技术方面具有互补的专业知识,包括巴斯大学、剑桥大学、爱丁堡大学、利兹大学、斯特拉斯克莱德大学、南安普顿大学、苏塞克斯大学和华威大学。我们已经组建了一个由超过 25 家公司(Lockheed-Martin、Raytheon BBN、Google、AMEX)、政府实验室(NPL、DSTL、NIST)和中小企业(PureLiFi、Rohde & Schwarz、Aspen)组成的网络,他们正在投入资源和人力。我们雄心勃勃的旗舰目标是 Q20:20 引擎 - 一个由 20 个光学连接的离子阱处理器组成的网络,每个处理器包含 20 个量子位 (qubit)。这台 400 个量子比特的机器将比迄今为止所实现的任何机器都要强大得多,但最近在三个方面取得的进展使其成为一个可行的目标。首先,牛津大学的研究人员最近发现了一种利用通过光子(光粒子)以低精度连接的精确控制的量子位构建量子计算机的方法。其次,牛津大学离子阱研究人员最近创下了精确量子位控制的新世界纪录,准确率高达 99.9999%。第三,我们最近展示了如何控制小型二氧化硅芯片内的光子干扰。我们现在有一个令人兴奋的机会,可以将这些进步结合起来,创建一个光物质混合网络计算机,它可以“两全其美”,并克服长期存在的不切实际的问题,例如纯物质系统日益增加的复杂性,或巨大的资源需求该中心的工程师和科学家将与全球其他中心和合作伙伴合作以实现这一目标。目前,实验室正在进行原理验证实验,“重大挑战”是开发紧凑的可制造设备和组件来构建 Q20:20 发动机(并使其易于构建更多发动机)。我们已经确定了更多这项工作产生了 20 多个衍生产品,从防黑客的通信系统、超灵敏的医疗和军事传感器到更高分辨率的成像系统。量子 ICT 将带来巨大的经济效益,并为尚未解决的问题提供技术解决方案问题。正如今天的计算机允许喷气式飞机设计师在飞机制造之前测试飞机的空气动力学一样,量子计算机将在材料制造之前对材料的特性进行建模,或者在没有试错过程的情况下设计一种重要的药物。这称为数字量子模拟。事实上,许多使用传统计算难以解决的问题都可以通过“量子协处理器”得到增强。这是一种非常理想的能力,在科学技术的多个领域都很重要,以至于即使是有限的量子能力(例如 D-Wave 的设备)的前景也引起了极大的兴奋。 Q20:20将是可验证量子计算机的早期形式,这是一种不折不扣的通用机器,最终可以执行任何算法并扩展到任何规模;市场和影响将相应地更大。除了计算之外,还将用于安全通信,以便“可信”互联网变得可行,在传感方面 - 以便我们可以测量到新的精度水平,并在新组件中使用- 例如允许我们收集单光子的新探测器。该中心最终将成为新兴量子 ICT 行业的焦点,训练有素的科学家和工程师可以解决行业和更广阔的世界中的问题,量子技术将在其中带来好处。它将有助于组建新公司、新市场并发展英国的知识经济。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum state engineering by nondeterministic noiseless linear amplification
通过非确定性无噪声线性放大进行量子态工程
- DOI:http://dx.10.1103/physreva.99.063823
- 发表时间:2019
- 期刊:
- 影响因子:2.9
- 作者:Adnane H
- 通讯作者:Adnane H
Remote Non-Invasive Fabry-Pérot Cavity Spectroscopy for Label-Free Sensing.
用于无标记传感的远程非侵入式法布里-珀罗腔光谱。
- DOI:http://dx.10.3390/s23010385
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Al Ghamdi A
- 通讯作者:Al Ghamdi A
A comonadic view of simulation and quantum resources
模拟和量子资源的共同观点
- DOI:http://dx.10.1109/lics.2019.8785677
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Abramsky S
- 通讯作者:Abramsky S
Complexity-theoretic limitations on blind delegated quantum computation
盲委托量子计算的复杂性理论限制
- DOI:http://dx.10.4230/lipics.icalp.2019.6
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Aaronson S.
- 通讯作者:Aaronson S.
Quantum state engineering by non-deterministic noiseless linear amplification
通过非确定性无噪声线性放大进行量子态工程
- DOI:http://dx.10.48550/arxiv.1901.10509
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Adnane H
- 通讯作者:Adnane H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Walmsley其他文献
Ian Walmsley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Walmsley', 18)}}的其他基金
REAGAN - Real-life applications with Gaussian boson sampling
REAGAN - 高斯玻色子采样的现实应用
- 批准号:
EP/Y029631/1 - 财政年份:2024
- 资助金额:
$ 4845.78万 - 项目类别:
Fellowship
QuICHE: Quantum information and communication with high-dimensional encoding
QuICHE:高维编码的量子信息与通信
- 批准号:
EP/T027177/1 - 财政年份:2020
- 资助金额:
$ 4845.78万 - 项目类别:
Research Grant
BBSRC IAA University of Oxford
BBSRC IAA 牛津大学
- 批准号:
BB/S50676X/1 - 财政年份:2018
- 资助金额:
$ 4845.78万 - 项目类别:
Research Grant
ESCHER: Establishing Supply Chains for Emergent Quantum Computers
埃舍尔:为新兴量子计算机建立供应链
- 批准号:
EP/R041865/1 - 财政年份:2018
- 资助金额:
$ 4845.78万 - 项目类别:
Research Grant
University of Oxford: experimental equipment upgrade
牛津大学:实验设备升级
- 批准号:
EP/M02833X/1 - 财政年份:2015
- 资助金额:
$ 4845.78万 - 项目类别:
Research Grant
The DiPOLE Laser on the Helmholtz Beamline at XFEL
XFEL 亥姆霍兹光束线上的偶极激光器
- 批准号:
EP/M000508/1 - 财政年份:2015
- 资助金额:
$ 4845.78万 - 项目类别:
Research Grant
Building Large Quantum States out of Light
用光构建大量子态
- 批准号:
EP/K034480/1 - 财政年份:2013
- 资助金额:
$ 4845.78万 - 项目类别:
Research Grant
Towards Real Applications in Broadband Quantum Memories
走向宽带量子存储器的实际应用
- 批准号:
EP/J000051/1 - 财政年份:2012
- 资助金额:
$ 4845.78万 - 项目类别:
Research Grant
Small items of research equipment at the University of Oxford
牛津大学的小型研究设备
- 批准号:
EP/K031503/1 - 财政年份:2012
- 资助金额:
$ 4845.78万 - 项目类别:
Research Grant
University of Oxford - Equipment Account
牛津大学 - 设备账户
- 批准号:
EP/J013501/1 - 财政年份:2011
- 资助金额:
$ 4845.78万 - 项目类别:
Research Grant
相似国自然基金
量子启发的复合语义视频实例检索技术研究
- 批准号:62372339
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于量子技术的量子引力探究
- 批准号:12374482
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
超导量子比特光互联的关键技术研究
- 批准号:92365109
- 批准年份:2023
- 资助金额:68 万元
- 项目类别:重大研究计划
无经典信道高效连续变量量子密钥分发技术研究
- 批准号:62371060
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
QuantIC - The UK Quantum Technology Hub in Quantum Imaging
QuantIC - 英国量子成像量子技术中心
- 批准号:
EP/T00097X/1 - 财政年份:2019
- 资助金额:
$ 4845.78万 - 项目类别:
Research Grant
UK National Quantum Technology Hub in Sensing and Timing
英国国家传感和计时量子技术中心
- 批准号:
EP/T001046/1 - 财政年份:2019
- 资助金额:
$ 4845.78万 - 项目类别:
Research Grant
Quantum Technology Capital: UKQNtel - Bringing the Telecoms Industry to the UK Quantum Network
量子技术资本:UKQNtel - 将电信行业引入英国量子网络
- 批准号:
EP/N015207/1 - 财政年份:2016
- 资助金额:
$ 4845.78万 - 项目类别:
Research Grant
Quantum technology capital: UK Superconducting Quantum Technologies
量子科技之都:英国超导量子技术公司
- 批准号:
EP/N015088/1 - 财政年份:2016
- 资助金额:
$ 4845.78万 - 项目类别:
Research Grant
UK Quantum Technology Hub for Quantum Communications Technologies
英国量子通信技术量子技术中心
- 批准号:
EP/M013472/1 - 财政年份:2014
- 资助金额:
$ 4845.78万 - 项目类别:
Research Grant