Geometric structure and integrable systems in mathematical physics

数学物理中的几何结构和可积系统

基本信息

  • 批准号:
    16340040
  • 负责人:
  • 金额:
    $ 5.63万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

1.We considered the instanton sum of four and five dimensional supersymmetric gauge theories as a model of random (plane) partitions, and applied the method of free fermions for integrable hierarchies to derive the Seiberg-Witten curve.2.We pointed out a relation between a special class of deformation process of conformal mapping and a kind of dispersionless integrable systems. A solution technique (hodograph method) of such integrable systems was also studied.3.We derived several new dispersionless integrable systems.as quasi-classical limit from integrable hierarchies. An example is related to a q-analogue of the modified KP (and Toda) hierarchy. Another example is obtained from the two-component BKP hierarchy. Moreover, we could identify the so called genus-zero universal Whitham hierarchy to be quasi-classical limit of a multi-component analogue of the KP hierarchy.4.We elucidated some new features of solvable many body systems (the Calogero-Moser system, the Sutherland systems, and their variants) such as : equilibrium configuration, shape invariance, creation-annihilation operator (as quantum mechanics), direct integration method (as classical mechanics), etc.5.We obtained several geometric results on Grassmann manifolds, noncommutative algebraic varieties, invariants of low dimensional manifolds, hypergeometric equations related to hyperbolic cones, etc.6.We did some other researches on random matrices, Seiberg-Witten integrable systems, isomonodromic deformations, integrable systems related to a moduli space of vector bundles, etc.
1.我们将四个维度超对称理论的intsanton总和作为随机(平面)分区的模型,并应用了自由费米子的方法来推导Seiberg-witten曲线。22。我们指出了在特殊的合格映射的特殊形象映射和无用集成系统的特殊错误类别之间的关系。还研究了此类可集成系统的解决方案技术(Hodograph方法)。3。我们得出了几种新的无散集成系统。作为准分层次结构的准经典限制。一个示例与修改后的KP(和TODA)层次结构的Q Analogue有关。另一个示例是从两个组件BKP层次结构中获得的。此外,我们可以确定所谓的零属通用层次结构是KP层次结构的多组分类似物的准经典限制。机械师),直接整合方法(作为经典的力学)等。5。我们在格拉斯曼流形,非交易性代数品种,低维歧管的不变式,与超圆锥体相关的超几何方程等方面获得了几种几何结果。6。我们对随机矩阵的其他相关系统进行了一些相关的整合效果。矢量束的模量空间等。

项目成果

期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Explicit solutions of the classical Calogero & Sutherland systems for any root system
经典Calogero 的显式解
An integral lift of the Rochlin invariant of Spherical 3-manifolds and finite surgery
球形 3 流形的 Rochlin 不变量的积分升力和有限手术
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michihiko Fujii;Masaaki Ue;Masaaki Ue
  • 通讯作者:
    Masaaki Ue
q-Analogue of Modified KP Hierarchy and its Quasi-Classical Limit
  • DOI:
    10.1007/s11005-005-6782-5
  • 发表时间:
    2004-12
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    K. Takasaki
  • 通讯作者:
    K. Takasaki
The Neumann-Siebenmann invariant and Seifert surgery
Neumann-Siebenmann 不变量和 Seifert 手术
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michihiko Fujii;Masaaki Ue
  • 通讯作者:
    Masaaki Ue
Equilibria of 'discrete' integrable systems and deformations of classical orthogonal polynomials
“离散”可积系统的平衡和经典正交多项式的变形
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Odake;R.Sasaki
  • 通讯作者:
    R.Sasaki
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKASAKI Kanehisa其他文献

TAKASAKI Kanehisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKASAKI Kanehisa', 18)}}的其他基金

Integrable hierarchies related to Gromov-Witten invariants
与 Gromov-Witten 不变量相关的可积层次结构
  • 批准号:
    18K03350
  • 财政年份:
    2018
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory of integrable hierarchies and its application to mathematical physics
可积层次理论及其在数学物理中的应用
  • 批准号:
    22540186
  • 财政年份:
    2010
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Search for new connection of integrable systems and mathematical physics
寻找可积系统与数学物理的新联系
  • 批准号:
    19540179
  • 财政年份:
    2007
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable systems with higher genus spectral parameter
具有更高属谱参数的可积系统
  • 批准号:
    14540172
  • 财政年份:
    2002
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classical and quantum theory of finite-dimensional integrable systems
有限维可积系统的经典和量子理论
  • 批准号:
    12640169
  • 财政年份:
    2000
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Finite dimensional integrable structure in systems with infinite degree of freedom
无限自由度系统中的有限维可积结构
  • 批准号:
    10640165
  • 财政年份:
    1998
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了