Integrable hierarchies related to Gromov-Witten invariants

与 Gromov-Witten 不变量相关的可积层次结构

基本信息

  • 批准号:
    18K03350
  • 负责人:
  • 金额:
    $ 2.33万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2018
  • 资助国家:
    日本
  • 起止时间:
    2018-04-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
位相的弦理論の量子ミラー曲線
拓扑弦理论的量子镜像曲线
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Soren Eilers;James Gabe;Takeshi Katsura;Efren Ruiz;Mark Tomforde;青本和彦 伊藤雅彦;Takeshi Katsura;勝良健史;伊藤雅彦;Kanehisa Takasaki;勝良健史;伊藤雅彦 野海正俊;勝良健史;Takasaki Kanehisa;Masahiko Ito;高崎金久;Masahiko Ito;勝良健史;高崎金久;Masahiko Ito;Kanehisa Takasaki;伊藤雅彦;Kanehisa Takasaki;伊藤雅彦 野海正俊;高崎金久;高崎金久
  • 通讯作者:
    高崎金久
Generalized ILW hierarchy: solutions and limit to extended lattice GD hierarchy
Toda hierarchies and their applications
CP1の同変Gromov-Witten理論と同変戸田階層
CP1 的等变 Gromov-Witten 理论和等变 Toda 层次结构
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Soren Eilers;James Gabe;Takeshi Katsura;Efren Ruiz;Mark Tomforde;青本和彦 伊藤雅彦;Takeshi Katsura;勝良健史;伊藤雅彦;Kanehisa Takasaki;勝良健史;伊藤雅彦 野海正俊;勝良健史;Takasaki Kanehisa;Masahiko Ito;高崎金久;Masahiko Ito;勝良健史;高崎金久
  • 通讯作者:
    高崎金久
Hurwitz numbers and integrable hierarchy of Volterra type
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKASAKI Kanehisa其他文献

TAKASAKI Kanehisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKASAKI Kanehisa', 18)}}的其他基金

Theory of integrable hierarchies and its application to mathematical physics
可积层次理论及其在数学物理中的应用
  • 批准号:
    22540186
  • 财政年份:
    2010
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Search for new connection of integrable systems and mathematical physics
寻找可积系统与数学物理的新联系
  • 批准号:
    19540179
  • 财政年份:
    2007
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric structure and integrable systems in mathematical physics
数学物理中的几何结构和可积系统
  • 批准号:
    16340040
  • 财政年份:
    2004
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Integrable systems with higher genus spectral parameter
具有更高属谱参数的可积系统
  • 批准号:
    14540172
  • 财政年份:
    2002
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classical and quantum theory of finite-dimensional integrable systems
有限维可积系统的经典和量子理论
  • 批准号:
    12640169
  • 财政年份:
    2000
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Finite dimensional integrable structure in systems with infinite degree of freedom
无限自由度系统中的有限维可积结构
  • 批准号:
    10640165
  • 财政年份:
    1998
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

全種数グロモフ・ウィッテン理論におけるリーマン・ヒルベルト問題と可積分構造の研究
所有格罗莫夫-维滕理论中黎曼-希尔伯特问题和可积结构的研究
  • 批准号:
    21K03261
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimization of microtubule-stabilizing triazolopyrimidines as therapeutics for Alzheimer's disease and related tauopathies
优化微管稳定三唑并嘧啶作为阿尔茨海默病和相关 tau蛋白病的治疗方法
  • 批准号:
    10364719
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
New Development of Structural Analysis for Spatio-temporal Data based on Echelon Structure
基于阶梯结构的时空数据结构分析新进展
  • 批准号:
    17K00050
  • 财政年份:
    2017
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Phantom: A topological method to analyze macro-system and its singular perturbation
Phantom:一种分析宏观系统及其奇异摄动的拓扑方法
  • 批准号:
    15K13532
  • 财政年份:
    2015
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Melting crystal models and quantum torus symmetry
熔化晶体模型和量子环面对称性
  • 批准号:
    15K04912
  • 财政年份:
    2015
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了