TRACK SYSTEMS FOR HIGH SPEED RAILWAYS: GETTING IT RIGHT

高速铁路轨道系统:正确实施

基本信息

  • 批准号:
    EP/K03765X/1
  • 负责人:
  • 金额:
    $ 105.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Train speeds have steadily increased over time through advances in technology and the proposed second UK high speed railway line (HS2) will likely be designed with "passive provision" for future running at 400 km/hour. This is faster than on any ballasted track railway in the world. It is currently simply not known whether railway track for speeds of potentially 400 km/hour would be better constructed using a traditional ballast bed, a more highly engineered trackform such as a slabtrack or a hybrid between the two. Although slabtrack may have the advantage of greater permanence, ballasted track costs less to construct and if the need for ongoing maintenance can be overcome or reduced, may offer whole-life cost and carbon benefits. Certain knowledge gaps relating to ballasted track have become apparent from operational experience with HS1 and in the outline design of HS2. These concern1. Track Geometry: experience on HS1 (London to the Channel Tunnel) is that certain sections of track, such as transition zones (between ballasted track and a more highly engineered trackform as used in tunnels and on bridges) and some curves require excessive tamping. This results in accelerated ballast degradation and increased ground vibration; both have an adverse effect on the environmental performance of the railway in terms of material use and impact on the surroundings. Thus the suitability of current design rules in terms of allowable combinations of speed, vertical and horizontal curve radius, and how these affect the need for ongoing maintenance to retain ride quality and passenger comfort is uncertain.2. Critical velocity: on soft ground, train speeds can approach or exceed the speed of waves in the ground giving rise to resonance type effects and increased deformations. Instances of this phenomenon have been overcome using a number of mitigation measures such as the rebuilding of the embankment using compacted fill and geogrids, installation of a piled raft and ground treatment using either deep dry soil mixing or controlled modulus columns. The cost of such remedial measures can be very high, especially if they are taken primarily on a precautionary basis. However, many methods of analysis are unrefined (for example, linear elastic behaviour is often assumed or the heterogeneity of the ground, track support system and train dynamics are neglected), and conventional empirical methods may significantly overestimate dynamic amplification effects. Thus there is scope for achieving considerable economic benefits through the specification of more cost effective solutions, if the fundamental science can be better understood. 3. Ballast flight, ie the potential for ballast particles to become airborne during the passage of a very high speed train. This can cause extensive damage to the undersides of trains, and to the rails themselves if a small particle of ballast comes to rest on the rail and is then crushed. Investigations have shown that ballast flight depends on a combination of both mechanical and aerodynamic forces, and is therefore related to both train operating conditions and track layouts, but the exact conditions that give rise to it are not fully understood.The research idea is that, by understanding the underlying science associated with high speed railways and implementing it through appropriate, reasoned advances in engineering design, we can vastly improve on the effectiveness and reduce maintenance needs of ballasted railway track for line speeds up to at least 400 km/h.
随着技术进步,列车速度随着时间的推移稳步提高,拟议的第二条英国高速铁路线 (HS2) 可能会采用“被动配置”设计,以实现未来 400 公里/小时的运行速度。这比世界上任何有碴轨道铁路都要快。目前根本不知道时速可能达到 400 公里/小时的铁路轨道是否会更好地使用传统的道碴床、工程化程度更高的轨道形式(例如板式轨道)或两者的混合体来建造。尽管板式轨道可能具有更持久的优点,但有碴轨道的建造成本较低,如果可以克服或减少持续维护的需要,则可能会带来全生命周期成本和碳效益。从 HS1 的运行经验和 HS2 的总体设计来看,与有碴轨道相关的某些知识差距已经变得很明显。这些问题涉及1。轨道几何形状:HS1(伦敦到英吉利海峡隧道)的经验是,轨道的某些部分,例如过渡区(有碴轨道和隧道和桥梁中使用的更高设计的轨道模板之间)和一些弯道需要过度夯实。这会导致道碴加速退化并增加地面振动;在材料使用和对周围环境的影响方面,两者都会对铁路的环境绩效产生不利影响。因此,当前设计规则在允许的速度、垂直和水平曲线半径组合方面的适用性,以及这些如何影响持续维护以保持乘坐质量和乘客舒适度的需要是不确定的。2.临界速度:在松软的地面上,列车速度可以接近或超过地面中的波速,从而引起共振型效应并增加变形。这种现象的实例已经通过许多缓解措施得到克服,例如使用压实填料和土工格栅重建路堤、安装桩筏以及使用深层干土混合或控制模量柱进行地面处理。此类补救措施的成本可能非常高,特别是如果主要是出于预防目的而采取这些措施的话。然而,许多分析方法不够完善(例如,经常假设线弹性行为或忽略地面、轨道支撑系统和列车动力学的异质性),并且传统的经验方法可能会显着高估动态放大效应。因此,如果可以更好地理解基础科学,则可以通过制定更具成本效益的解决方案来实现可观的经济效益。 3. 道碴飞行,即道碴颗粒在超高速列车通过期间可能飘浮在空气中。如果一小块道碴颗粒落在铁轨上然后被压碎,可能会对火车底部以及铁轨本身造成严重损坏。调查表明,压载飞行取决于机械力和空气动力的共同作用,因此与列车运行条件和轨道布局都有关,但引起它的确切条件尚不完全清楚。研究思路是,通过了解与高速铁路相关的基础科学,并通过适当、合理的工程设计进步来实施它,我们可以大大提高线路速度至少 400 公里/小时的有碴铁路轨道的效率并减少维护需求。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating railway track support stiffness from trackside measurements in the absence of wheel load data
在没有轮载数据的情况下,通过轨旁测量评估铁路轨道支撑刚度
  • DOI:
    10.1139/cgj-2015-0268
  • 发表时间:
    2016-02-18
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    L. Pen;D. Milne;D. Thompson;W. Powrie
  • 通讯作者:
    W. Powrie
Effect of train speed and track geometry on the ride comfort in high-speed railways based on ISO 2631-1
基于 ISO 2631-1 的列车速度和轨道几何形状对高速铁路乘坐舒适性的影响
Proving MEMS Technologies for Smarter Railway Infrastructure
证明 MEMS 技术可实现更智能的铁路基础设施
  • DOI:
    http://dx.10.1016/j.proeng.2016.06.222
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Milne D
  • 通讯作者:
    Milne D
Automated processing of railway track deflection signals obtained from velocity and acceleration measurements.
自动处理从速度和加速度测量获得的铁路轨道偏转信号。
The influence of variation in track level and support system stiffness over longer lengths of track for track performance and vehicle track interaction
较长轨道长度上轨道水平和支撑系统刚度的变化对轨道性能和车辆轨道相互作用的影响
  • DOI:
    10.1080/00423114.2019.1677920
  • 发表时间:
    2019-10-13
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    D. Milne;J. Harkness;L. Le Pen;W. Powrie
  • 通讯作者:
    W. Powrie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Powrie其他文献

Ground Behavior due to Dewatering Inside a Foundation Pit Considering the Barrier Effect of Preexisting Building Piles on Aquifer Flow
考虑现有建筑桩对含水层流量的屏障效应,基坑内脱水引起的地面行为
Preface to the Special Issue on Geotechnical asset deterioration and climate change
岩土资产恶化与气候变化特刊序言
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Tom Dijkstra;S. Glendinning;Kevin M. Briggs;William Powrie
  • 通讯作者:
    William Powrie
Mechanisms of root reinforcement in soils: an experimental methodology using four-dimensional X-ray computed tomography and digital volume correlation
土壤根系加固机制:使用四维 X 射线计算机断层扫描和数字体积相关的实验方法
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Bull;J. Smethurst;Ian Sinclair;Fabrice Pierron;Tiina Roose;William Powrie;A. G. Bengough;A. G. Bengough
  • 通讯作者:
    A. G. Bengough
A computational fluid dynamics study of the influence of sleeper shape and ballast depth on ballast flight during passage of a simplified train
简化列车通过期间枕木形状和道碴深度对道碴飞行影响的计算流体动力学研究
Soil mechanics principles for modelling railway track performance
铁路轨道性能建模的土壤力学原理
  • DOI:
    10.1016/j.trgeo.2024.101265
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    William Powrie
  • 通讯作者:
    William Powrie

William Powrie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Powrie', 18)}}的其他基金

Infrastructure for Port And Coastal cities and Towns network (iPACT)
港口和沿海城镇网络基础设施 (iPACT)
  • 批准号:
    EP/W033933/1
  • 财政年份:
    2022
  • 资助金额:
    $ 105.76万
  • 项目类别:
    Research Grant
REAL: River, Estuary and Coastal resilient infrastructure testing flume
真实:河流、河口和沿海弹性基础设施测试水槽
  • 批准号:
    EP/X013901/1
  • 财政年份:
    2022
  • 资助金额:
    $ 105.76万
  • 项目类别:
    Research Grant
Quantifying macroscopic flow and transport in the unsaturated zone to address the long-term contaminant burden of waste repositories.
量化非饱和区的宏观流动和运输,以解决废物储存库的长期污染物负担。
  • 批准号:
    EP/R04242X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 105.76万
  • 项目类别:
    Research Grant
The science and analytical tools to design long life, low noise railway track systems
用于设计长寿命、低噪音铁路轨道系统的科学和分析工具
  • 批准号:
    EP/M025276/1
  • 财政年份:
    2015
  • 资助金额:
    $ 105.76万
  • 项目类别:
    Research Grant
Processes, mechanics and management of wastes
废物的工艺、机械和管理
  • 批准号:
    EP/I012206/1
  • 财政年份:
    2011
  • 资助金额:
    $ 105.76万
  • 项目类别:
    Research Grant
Factor 20: reducing CO2 emissions from inland transport by a major modal shift to rail
因素 20:通过向铁路的重大模式转变减少内陆运输的二氧化碳排放
  • 批准号:
    EP/H024743/1
  • 财政年份:
    2010
  • 资助金额:
    $ 105.76万
  • 项目类别:
    Research Grant
Industrial CASE Account - Southampton 2010
工业 CASE 帐户 - 南安普敦 2010
  • 批准号:
    EP/I501673/1
  • 财政年份:
    2010
  • 资助金额:
    $ 105.76万
  • 项目类别:
    Training Grant
Railway Track for the 21st Century
21世纪的铁路轨道
  • 批准号:
    EP/H044949/1
  • 财政年份:
    2010
  • 资助金额:
    $ 105.76万
  • 项目类别:
    Research Grant
Infrastructure monitoring using passive remote imagery
使用被动远程图像进行基础设施监控
  • 批准号:
    EP/G056102/1
  • 财政年份:
    2010
  • 资助金额:
    $ 105.76万
  • 项目类别:
    Research Grant
Performance of Ground Energy Systems Installed in Foundations
安装在地基中的地面能源系统的性能
  • 批准号:
    EP/H049010/1
  • 财政年份:
    2010
  • 资助金额:
    $ 105.76万
  • 项目类别:
    Research Grant

相似国自然基金

速度诱发的动态无线供电系统暂态功率振荡机理及抑制方法研究
  • 批准号:
    52377016
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
600km/h速度级常导高速磁浮系统性能评估及协同优化关键理论与技术
  • 批准号:
    52332011
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
冲击波二维速度场高时空分辨诊断系统
  • 批准号:
    12127810
  • 批准年份:
    2021
  • 资助金额:
    643.6 万元
  • 项目类别:
    国家重大科研仪器研制项目
三电平变换器-永磁同步电机系统宽速度范围转矩波动抑制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
基于全固态光冷MEMS系统的加速度精密测量研究
  • 批准号:
    U2130117
  • 批准年份:
    2021
  • 资助金额:
    49 万元
  • 项目类别:
    联合基金项目

相似海外基金

Markerless Tracking of 3D Posture to Reveal the Sensory Origins of Body Schema
3D 姿势无标记跟踪揭示身体图式的感官起源
  • 批准号:
    10410450
  • 财政年份:
    2020
  • 资助金额:
    $ 105.76万
  • 项目类别:
Markerless Tracking of 3D Posture to Reveal the Sensory Origins of Body Schema
3D 姿势无标记跟踪揭示身体图式的感官起源
  • 批准号:
    10216941
  • 财政年份:
    2020
  • 资助金额:
    $ 105.76万
  • 项目类别:
SC COBRE for TranslationalResearch Improving MusculoskeletalHealth (SC-TRIMH)
SC COBRE 改善肌肉骨骼健康转化研究 (SC-TRIMH)
  • 批准号:
    10714162
  • 财政年份:
    2018
  • 资助金额:
    $ 105.76万
  • 项目类别:
Mechanism and therapeutic application of RNA-guided immune systems
RNA引导的免疫系统的机制和治疗应用
  • 批准号:
    9306142
  • 财政年份:
    2016
  • 资助金额:
    $ 105.76万
  • 项目类别:
TRACK SYSTEMS FOR HIGH SPEED RAILWAYS: GETTING IT RIGHT
高速铁路轨道系统:正确实施
  • 批准号:
    EP/K037676/1
  • 财政年份:
    2014
  • 资助金额:
    $ 105.76万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了