The science and analytical tools to design long life, low noise railway track systems

用于设计长寿命、低噪音铁路轨道系统的科学和分析工具

基本信息

  • 批准号:
    EP/M025276/1
  • 负责人:
  • 金额:
    $ 661.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Electrified railways are the only form of powered transport realistically offering zero CO2 emissions at point of use. A reduction in CO2 emissions from transport will require a massive shift from road to rail, itself a challenge as even a 10% shift in the UK would double rail traffic. This is on top of a doubling in rail travel and increased intensity of use of the network since 1994, exposing the limitations of traditional track forms as real time maintenance needs increased and the time available for maintenance reduced. The rail industry is also under pressure to reduce costs and environmental impacts including noise and vibration, often a major cause of objections to proposed new and upgraded lines.The contribution of rail transport to social wellbeing, regeneration and growth is well established; and rail is now seen as the key to unlocking prosperity, improving east-west connectivity in the UK and reducing the north-south economic divide. Planned UK and international rail investment is unprecedented in a century, but increased demands and expectations have revealed gaps in the knowledge needed for effective, rational investment. Scope for cost savings and improved environmental performance through better track system design and longevity is substantial: Network Rail currently spends £3.5bn p.a. on infrastructure maintenance and renewal, and will invest £38bn in 2014-9. TRACK to the FUTURE (T2F) will discover the scientific knowledge and develop the analytical tools to design long-life, low-noise railway track systems that are economical to install, require minimal maintenance, and optimize environmental performance. It will deliver step-change improvements in three key areas:1.Track life: track maintenance is costly in cash and carbon terms, and interferes with operations. T2F will explore new, low-maintenance track forms. It will develop an understanding of the relationships between track stiffness and settlement, which can be measured, and differential movement of the track, which causes performance to deteriorate. It will extend ballast life by understanding and eliminating or mitigating causes of deterioration and developing designs that will continue to perform well long after deterioration has set in; and will facilitate ballast re-use rather than downcycling or disposal.2.Switches (points) and transitions: where trains change direction and cross tracks or other infrastructure there is a complex interaction of geometry, support, wheel profile and vehicle dynamics. This is not sufficiently understood and frequent costly and disruptive maintenance is required. T2F will draw together the key areas of ground support, switch or transition zone geometry, and vehicle dynamics for the reliable assessment of crossing and transition zone behaviour, life and maintenance needs.3.Noise and vibration: public tolerance of vibration and noise from railways is decreasing as use intensifies, yet these are traditionally regarded as secondary in design. T2F will develop and demonstrate, through modelling and full-scale testing, a low-noise, low-vibration track consistent with reduced whole life costs and low maintenance.In every aspect, T2F will address the effects of millions of cycles of complex loads to which track systems are subjected in a modern environment, taking into account the combined effects of noise, vibration, vehicle dynamics and ground behaviour, non-uniformities of loading and non-linearities in response. The research will lead to the development of integrated tools, based on sound fundamental principles and reliable observations of behaviour, for assessing performance of track systems including transitions and crossings, noise and vibration. These will be incorporated into existing industry analytical models to improve the performance and reduce maintenance needs of railway track systems, in support of the DfT Rail Technical Strategy 2040 vision of infrastructure fit for the 21st century.
电气化铁路是唯一一种在使用点真正实现零二氧化碳排放的动力运输形式。减少交通运输的二氧化碳排放需要从公路转向铁路,这本身就是一个挑战,因为在英国即使转变 10%,也会翻倍。自 1994 年以来,铁路运输量翻了一番,网络使用强度也随之增加,随着实时维护需求的增加和可用于维护的时间的减少,暴露了传统轨道形式的局限性。在压力下降低成本和环境影响,包括噪音和振动,这往往是反对拟议的新线路和升级线路的主要原因。铁路运输对社会福祉、复兴和增长的贡献已得到充分证实,铁路现在被视为解锁的关键;英国和国际铁路投资的计划是一个世纪以来前所未有的,但日益增长的需求和期望揭示了有效、理性投资所需的知识差距。通过更好的轨道系统节省成本并提高环境绩效设计和寿命至关重要:Network Rail 目前每年花费 35 亿英镑用于基础设施维护和更新,并将在 2014 年 9 月投资 380 亿英镑,以发现科学知识并开发分析工具来进行长期设计。 - 使用寿命长、低噪音的铁路轨道系统,安装经济、维护成本低,并优化环境绩效。 它将在三个关键领域带来显着改进: 1. 轨道寿命:轨道维护成本高昂。 T2F 将探索新的、低维护的轨道形式,了解可测量的轨道刚度和沉降之间的关系,以及轨道的差异运动,从而导致性能恶化。通过了解并消除或减轻劣化原因并开发在劣化发生后仍能长期保持良好性能的设计,将有助于镇流器的再利用而不是降级循环或处置,从而延长镇流器的使用寿命。 (点)和过渡:当火车改变方向并穿越轨道或其他基础设施时,几何形状、支撑、车轮轮廓和车辆动力学之间存在复杂的相互作用,这一点尚未得到充分理解,并且需要频繁进行昂贵且破坏性的维护。地面支撑、道岔或过渡区几何形状以及车辆动力学的关键领域,用于可靠评估穿越和过渡区行为、寿命和维护需求。3.噪声和振动:公众对铁路振动和噪声的容忍度随着使用而降低加剧,但传统上这些被认为是次要的T2F 设计将通过建模和全面测试开发和演示一种低噪音、低振动轨道,可降低整个生命周期成本并降低维护成本。T2F 将在各个方面解决数百万个复杂循环的影响。轨道系统在现代环境下所承受的载荷,考虑到噪声、振动、车辆动力学和地面行为、载荷不均匀性和响应非线性的综合影响。工具,基于合理的基本原则和行为观察,用于评估轨道系统的性能,包括可靠的过渡和交叉、噪声和振动,这些将被纳入现有的行业分析模型中,以提高铁路轨道系统的性能并减少维护需求,以支持 DfT 铁路技术。适合 21 世纪的基础设施战略 2040 愿景。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Review and Evaluation of Ballast Settlement Models using Results from the Southampton Railway Testing Facility (SRTF)
使用南安普顿铁路测试设施 (SRTF) 的结果对道碴沉降模型进行审查和评估
  • DOI:
    http://dx.10.1016/j.proeng.2016.06.089
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abadi T
  • 通讯作者:
    Abadi T
A behavioural framework for fibre-reinforced gravel
纤维增强砾石的行为框架
  • DOI:
    http://dx.10.1680/jgeot.16.p.023
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ajayi O
  • 通讯作者:
    Ajayi O
Benefits from the remote monitoring of railway assets
铁路资产远程监控的好处
Advances in Transportation Geotechnics IV - Proceedings of the 4th International Conference on Transportation Geotechnics Volume 2
交通岩土工程进展 IV - 第四届交通岩土工程国际会议论文集第 2 卷
  • DOI:
    http://dx.10.1007/978-3-030-77234-5_6
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abadi T
  • 通讯作者:
    Abadi T
Scaling relationships for strip fibre-reinforced aggregates
带状纤维增强骨料的比例关系
  • DOI:
    http://dx.10.1139/cgj-2016-0346
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Ajayi O
  • 通讯作者:
    Ajayi O
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Powrie其他文献

Ground Behavior due to Dewatering Inside a Foundation Pit Considering the Barrier Effect of Preexisting Building Piles on Aquifer Flow
考虑现有建筑桩对含水层流量的屏障效应,基坑内脱水引起的地面行为
Preface to the Special Issue on Geotechnical asset deterioration and climate change
岩土资产恶化与气候变化特刊序言
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Tom Dijkstra;S. Glendinning;Kevin M. Briggs;William Powrie
  • 通讯作者:
    William Powrie
Mechanisms of root reinforcement in soils: an experimental methodology using four-dimensional X-ray computed tomography and digital volume correlation
土壤根系加固机制:使用四维 X 射线计算机断层扫描和数字体积相关的实验方法
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Bull;J. Smethurst;Ian Sinclair;Fabrice Pierron;Tiina Roose;William Powrie;A. G. Bengough;A. G. Bengough
  • 通讯作者:
    A. G. Bengough
A computational fluid dynamics study of the influence of sleeper shape and ballast depth on ballast flight during passage of a simplified train
简化列车通过期间枕木形状和道碴深度对道碴飞行影响的计算流体动力学研究
Soil mechanics principles for modelling railway track performance
铁路轨道性能建模的土壤力学原理
  • DOI:
    10.1016/j.trgeo.2024.101265
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    William Powrie
  • 通讯作者:
    William Powrie

William Powrie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Powrie', 18)}}的其他基金

Infrastructure for Port And Coastal cities and Towns network (iPACT)
港口和沿海城镇网络基础设施 (iPACT)
  • 批准号:
    EP/W033933/1
  • 财政年份:
    2022
  • 资助金额:
    $ 661.74万
  • 项目类别:
    Research Grant
REAL: River, Estuary and Coastal resilient infrastructure testing flume
真实:河流、河口和沿海弹性基础设施测试水槽
  • 批准号:
    EP/X013901/1
  • 财政年份:
    2022
  • 资助金额:
    $ 661.74万
  • 项目类别:
    Research Grant
Quantifying macroscopic flow and transport in the unsaturated zone to address the long-term contaminant burden of waste repositories.
量化非饱和区的宏观流动和运输,以解决废物储存库的长期污染物负担。
  • 批准号:
    EP/R04242X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 661.74万
  • 项目类别:
    Research Grant
TRACK SYSTEMS FOR HIGH SPEED RAILWAYS: GETTING IT RIGHT
高速铁路轨道系统:正确实施
  • 批准号:
    EP/K03765X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 661.74万
  • 项目类别:
    Research Grant
Processes, mechanics and management of wastes
废物的工艺、机械和管理
  • 批准号:
    EP/I012206/1
  • 财政年份:
    2011
  • 资助金额:
    $ 661.74万
  • 项目类别:
    Research Grant
Factor 20: reducing CO2 emissions from inland transport by a major modal shift to rail
因素 20:通过向铁路的重大模式转变减少内陆运输的二氧化碳排放
  • 批准号:
    EP/H024743/1
  • 财政年份:
    2010
  • 资助金额:
    $ 661.74万
  • 项目类别:
    Research Grant
Industrial CASE Account - Southampton 2010
工业 CASE 帐户 - 南安普敦 2010
  • 批准号:
    EP/I501673/1
  • 财政年份:
    2010
  • 资助金额:
    $ 661.74万
  • 项目类别:
    Training Grant
Railway Track for the 21st Century
21世纪的铁路轨道
  • 批准号:
    EP/H044949/1
  • 财政年份:
    2010
  • 资助金额:
    $ 661.74万
  • 项目类别:
    Research Grant
Infrastructure monitoring using passive remote imagery
使用被动远程图像进行基础设施监控
  • 批准号:
    EP/G056102/1
  • 财政年份:
    2010
  • 资助金额:
    $ 661.74万
  • 项目类别:
    Research Grant
Performance of Ground Energy Systems Installed in Foundations
安装在地基中的地面能源系统的性能
  • 批准号:
    EP/H049010/1
  • 财政年份:
    2010
  • 资助金额:
    $ 661.74万
  • 项目类别:
    Research Grant

相似国自然基金

具Hardy与库伦位势的色散方程的动力学行为研究
  • 批准号:
    11901041
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
新能源汽车产业供需双侧政策的多维度匹配性分析及动态转换研究
  • 批准号:
    71874208
  • 批准年份:
    2018
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
LCM与CFD耦合算法研究及其在汽车乘坐热舒适性分析中的应用
  • 批准号:
    51405082
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
软件安全性分析的关键技术与工具
  • 批准号:
    91418206
  • 批准年份:
    2014
  • 资助金额:
    180.0 万元
  • 项目类别:
    重大研究计划
基于软件网络的可信性度量体系研究及其分析工具的实现
  • 批准号:
    60973022
  • 批准年份:
    2009
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spatial genomic tools to interrogate T cell clonotypes, tumor clones and the microenvironment
用于询问 T 细胞克隆型、肿瘤克隆和微环境的空间基因组工具
  • 批准号:
    10565141
  • 财政年份:
    2023
  • 资助金额:
    $ 661.74万
  • 项目类别:
Promoting Collaborative Research on Human Connectome Analysis for Substance Use Disorders
促进药物使用障碍人类连接组分析的合作研究
  • 批准号:
    10738580
  • 财政年份:
    2023
  • 资助金额:
    $ 661.74万
  • 项目类别:
Individualized Immunosuppression for Kidney Transplant Recipients
肾移植受者的个体化免疫抑制
  • 批准号:
    10664609
  • 财政年份:
    2023
  • 资助金额:
    $ 661.74万
  • 项目类别:
Core D: Biostatistics and Computational Analysis Core
核心 D:生物统计学和计算分析核心
  • 批准号:
    10731280
  • 财政年份:
    2023
  • 资助金额:
    $ 661.74万
  • 项目类别:
Research Core
研究核心
  • 批准号:
    10557581
  • 财政年份:
    2023
  • 资助金额:
    $ 661.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了