Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology

清洁增长的可持续方式:通过工程生物学创新纺织品生产

基本信息

  • 批准号:
    BB/Y007735/1
  • 负责人:
  • 金额:
    $ 218.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

This Engineering Biology Mission Award project is an intensive 2-year program designed to use synthetic biology and microbial fermentation to rapidly bring Clean Growth benefits to one the worst-polluting sectors of global industry: fashion. The project brings together a set of expert teams based in Newcastle and London with UK SMEs and start-ups that are transforming the fashion sector via their use of microbially-made products. Our combined research efforts will be put to task on rapidly transforming the biological production of an exciting, innovative and environmentally friendly product that can rapidly be adopted by the fashion sector: microbial leather. We will develop and optimise a variety of sustainable and efficient biomanufacturing processes for producing a class of microbial leather based on bacterial cellulose, a high-performance biomaterial grown in high yield at low cost from the bacteria found in Kombucha fermentations. Our project is designed to use engineering biology approaches to immediately increase the efficiency of the environmentally friendly manufacturing process of producing this microbial leather. We will work together to engineer bacterial strains and use synthetic biology methods to enable high efficiency use of waste feedstocks, efficient water and nutrient usage, and innovative bio-based treatments for desirable properties, such as colouration, patterns, coatings and additives. The societal goal of this work is to create sustainable and renewable processes for a circular economy for microbial leather production and end-of-life. The project will contribute to the UK's Net-Zero targets by reducing carbon emissions and petrochemical use in the production of leather alternatives. Notably fashion is a crucial sector for UK economic growth but is entirely dependent on the global textiles industry, an industry that causes up to 10% of global carbon emissions, produces 20% of wastewater and 35% of marine microplastic pollution. This industry is projected to use up to 25% of the global carbon budget by 2050, and as such it is a key target for innovation for clean growth if the world is to meet its sustainability goals. Of all materials used in fashion, leather is particularly problematic, as cattle are the leading driver of deforestation, and chrome tanning creates widespread chemical pollution. No other material comes close for its all-round negative impact, and current plastics-based leather alternatives require incineration or landfill at their end of life, and so are not the desired alternative. For microbial leather to emerge as the ideal replacement to the world's use of bovine leather, we need to address 4 main technical challenges: 1: Reducing the need for using expensive sugar in the growth of bacterial cellulose 2: Removing the need to have separate processes for dyeing and patterning a material 3: Removing reliance on petrochemical-derived additives and toxic crosslinking methods 4: Improving durability but be able to still ensure natural degradation at end-of-life We aim to address these challenges by leveraging engineered biology for efficient material fabrication and controllable modification in a minimal number of steps. We will do this by engineering enzymes, microbes and microbial communities (E. coli, yeast, bacillus and Komagataeibacter) doing so in collaboration with the ideal set of UK industry partners; Colorifix, Modern Synthesis and Brewlab, With their help we will conduct pilot-scale production runs and process tests, and to ensure impact and a future beyond this award we will also engage with wider stakeholders, such as target industrial consumers, fashion designers and sustainability analysts that can help us determine the ideal route-to-market. In doing this project we will accelerate the UK's leadership in clean growth in fashion by helping replace leather with a low-impact, highly desirable microbially-made alternative.
该工程生物学使命奖项目是一项为期 2 年的强化计划,旨在利用合成生物学和微生物发酵,迅速为全球工业污染最严重的行业之一:时尚行业带来清洁增长的效益。该项目汇集了位于纽卡斯尔和伦敦的一组专家团队以及英国中小企业和初创企业,这些企业正在通过使用微生物制造的产品来改变时尚行业。我们的联合研究工作将致力于快速改变一种令人兴奋的、创新的、环保的产品的生物生产方式,这种产品可以迅速被时尚界采用:微生物皮革。我们将开发和优化各种可持续且高效的生物制造工艺,用于生产一类基于细菌纤维素的微生物皮革,细菌纤维素是一种高性能生物材料,由康普茶发酵中发现的细菌高产、低成本生长。我们的项目旨在利用工程生物学方法立即提高生产这种微生物皮革的环保制造过程的效率。我们将共同努力设计细菌菌株并使用合成生物学方法来实现废物原料的高效利用、水和养分的高效利用以及创新的生物基处理以获得所需的特性,例如着色、图案、涂层和添加剂。这项工作的社会目标是为微生物皮革生产和报废的循环经济创建可持续和可再生的工艺。该项目将通过减少皮革替代品生产中的碳排放和石化产品的使用,为英国的净零目标做出贡献。值得注意的是,时尚业是英国经济增长的关键部门,但完全依赖于全球纺织业,该行业造成的碳排放量占全球的 10%,产生 20% 的废水和 35% 的海洋微塑料污染。预计到 2050 年,该行业将使用全球碳预算的 25%,因此,如果世界要实现其可持续发展目标,该行业就是清洁增长创新的关键目标。在时尚界使用的所有材料中,皮革的问题尤其严重,因为牛是森林砍伐的主要推动者,而铬鞣会造成广泛的化学污染。没有其他材料能与其全方位的负面影响相媲美,目前的塑料皮革替代品在使用寿命结束时需要焚烧或填埋,因此不是理想的替代品。为了使微生物皮革成为世界上使用的牛皮的理想替代品,我们需要解决 4 个主要技术挑战: 1:减少在细菌纤维素生长过程中使用昂贵糖的需求 2:消除单独工艺的需要用于材料染色和图案化 3:消除对石化衍生添加剂和有毒交联方法的依赖 4:提高耐用性,但仍能确保报废时自然降解 我们的目标是解决通过利用工程生物学以最少的步骤进行高效的材料制造和可控修饰来应对这些挑战。我们将通过与理想的英国行业合作伙伴合作,对酶、微生物和微生物群落(大肠杆菌、酵母、芽孢杆菌和 Komagataeibacter)进行改造来实现这一目标; Colorifix、Modern Synthesis 和 Brewlab,在他们的帮助下,我们将进行中试规模生产运行和工艺测试,为了确保该奖项之外的影响和未来,我们还将与更广泛的利益相关者合作,例如目标工业消费者、时装设计师和可持续发展分析师可以帮助我们确定理想的上市途径。在这个项目中,我们将通过帮助用低影响、非常理想的微生物制造替代品取代皮革,加速英国在时尚清洁增长方面的领导地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Ellis其他文献

Self-assembly of supramolecular triarylamine nanowires in mesoporous silica and biocompatible electrodes thereof
  • DOI:
    10.1039/c5nr06977g
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Erol-Dan Licsandru;Susanne Schneider;Sophie Tingry;Thomas Ellis;Emilie Moulin;Mounir Maaloum;Jean-Marie Lehn;Mihail Barboiu;Nicolas Giuseppone
  • 通讯作者:
    Nicolas Giuseppone
Synchrotron FTIR as a tool for studying populations and individual living cells of green algae
同步加速器 FTIR 作为研究绿藻种群和个体活细胞的工具
  • DOI:
    10.1101/808220
  • 发表时间:
    2019-10-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kira L. Goff;Thomas Ellis;K. Wilson
  • 通讯作者:
    K. Wilson
3D supramolecular self-assembly of [60]fullerene hexaadducts decorated with triarylamine molecules
  • DOI:
    10.1039/c8cc04079f
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Odile Gavat;Thi Minh Nguyet Trinh;Emilie Moulin;Thomas Ellis;Mounir Maaloum;Eric Buhler;Guillaume Fleith;Jean-François Nierengarten;Nicolas Giuseppone
  • 通讯作者:
    Nicolas Giuseppone
Chemical and Structural Information from the Enamel of a Troodon Tooth Leading to an Understanding of Diet and Environment
伤齿龙牙釉质的化学和结构信息有助于了解饮食和环境
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    R. Feng;J. Maley;G. Schatte;R. Hoffmeyer;K. Brink;Thomas Ellis;Donald J. Brinkman;R. Sammynaiken
  • 通讯作者:
    R. Sammynaiken
Mid-Infrared Spectroscopy Study of Effects of Neonicotinoids on Forager Honey Bee (Apis mellifera) Fat Bodies and Their Connection to Colony Collapse Disorder
新烟碱类杀虫剂对采集蜜蜂 (Apis mellifera) 脂肪体影响及其与蜂群崩溃失调的关系的中红外光谱研究
  • DOI:
    10.1101/205112
  • 发表时间:
    2018-01-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuzheng Feng;Aryan Luthra;Kaiwen Ding;Yang Yang;Jordan Savage;Xinrui Wei;Rol;Moeschter;Sachin Ahuja;Victor Villegas;Bogdana Torbina;Anjuli Ahooja;Thomas Ellis;Anna;Andrew Roberts
  • 通讯作者:
    Andrew Roberts

Thomas Ellis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Ellis', 18)}}的其他基金

CBET-EPSRC - Grown Engineered Materials (GEMs): synthetic consortia for biomanufacturing tunable composites
CBET-EPSRC - 生长工程材料 (GEM):生物制造可调复合材料的合成联盟
  • 批准号:
    EP/S032215/1
  • 财政年份:
    2020
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
[Australia] Construction of Synthetic Yeast Chromosomes using BioFoundries in United Kingdom and Australia
[澳大利亚] 使用英国和澳大利亚的 BioFoundries 构建合成酵母染色体
  • 批准号:
    BB/S020411/1
  • 财政年份:
    2019
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Towards Genomes-to-Design: Building and Testing a Minimal Essential Chromosome
迈向基因组设计:构建和测试最小必需染色体
  • 批准号:
    BB/R002614/1
  • 财政年份:
    2018
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Grow-Your-Own Composites: Programming Diverse Material Properties for Defence into Engineered Bacterial Cellulose
自行种植复合材料:将用于防御的多种材料特性编程到工程细菌纤维素中
  • 批准号:
    EP/N026489/1
  • 财政年份:
    2016
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
14TSB_SynBio A High Throughput Miniaturised Mass Spectrometry Tool for Profiling Synthetic Design Libraries
14TSB_SynBio 用于分析合成设计文库的高通量小型化质谱工具
  • 批准号:
    BB/M005577/1
  • 财政年份:
    2014
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Engineering Fellowships for Growth: Advanced synthetic biology measurement to enable programmable functional biomaterials
增长工程奖学金:先进的合成生物学测量,以实现可编程功能生物材料
  • 批准号:
    EP/M002306/1
  • 财政年份:
    2014
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Fellowship
Genome Organisation for Optimising Synthetic Secondary Metabolism
用于优化合成次级代谢的基因组组织
  • 批准号:
    BB/K006290/1
  • 财政年份:
    2013
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
The Sc2.0 UK Genome Engineering Resource (SUGER)
Sc2.0 英国基因组工程资源 (SUGER)
  • 批准号:
    BB/K019791/1
  • 财政年份:
    2013
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Engineered burden-based feedback for robust and optimised synthetic biology
工程化的基于负荷的反馈,用于稳健和优化的合成生物学
  • 批准号:
    EP/J021849/1
  • 财政年份:
    2013
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Engineered security systems for environmental synthetic biology
环境合成生物学工程安全系统
  • 批准号:
    BB/J019720/1
  • 财政年份:
    2012
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant

相似国自然基金

数字化转型下人机融合领导风格对团队绩效的影响机制研究
  • 批准号:
    72372156
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
唐卡壁画内容生成与风格迁移关键技术研究
  • 批准号:
    62366047
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
风格-内容-模型联合增强的单源领域泛化方法研究
  • 批准号:
    62306008
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
从图像到矢量地图的风格迁移方法
  • 批准号:
    42371443
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
考虑驾驶员动态风格的共驾型汽车横向动力学分析与共享控制研究
  • 批准号:
    52302469
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Doctoral Dissertation Research: Place, Persona, and Linguistic Style among College Student Border Commuters
博士论文研究:大学生边境通勤者的地点、角色和语言风格
  • 批准号:
    2336567
  • 财政年份:
    2024
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Standard Grant
Music Production Style Transfer (ProStyle)
音乐制作风格迁移 (ProStyle)
  • 批准号:
    10105431
  • 财政年份:
    2024
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Collaborative R&D
Style and expressions of the Memorial Prayers -Yoshishige no Yasutane's writings
纪念祈愿文的风格和表达——义重安种的著作
  • 批准号:
    22KJ2112
  • 财政年份:
    2023
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Using epigenetic science to improve environmental health literacy
利用表观遗传学提高环境健康素养
  • 批准号:
    10524680
  • 财政年份:
    2023
  • 资助金额:
    $ 218.53万
  • 项目类别:
Core E: Biosample Core
核心 E:生物样本核心
  • 批准号:
    10555694
  • 财政年份:
    2023
  • 资助金额:
    $ 218.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了