Exploiting anatomical traits to accelerate breeding of novel stress tolerant crops

利用解剖特征加速新型抗逆作物的育种

基本信息

  • 批准号:
    BB/S011102/1
  • 负责人:
  • 金额:
    $ 38.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Drought and low soil fertility are major constraints to global crop production. These constraints are becoming even more challenging over time due to deteriorating soil quality, increasing population pressure and changing climate. In this context, recent discoveries have identified several root anatomical traits that can substantially improve crop yield and climate resilience by improving water and nutrient uptake. For example, the formation of air spaces (termed aerenchyma) in root cortex tissue occurs when living cells undergo programmed cell death. This significantly reduces nutrient demand and respiration of root tissues, enables plant to acquire more soil resources and improve crop yield under drought and suboptimal nutrient conditions. In addition to aerenchyma formation, other traits such as reduced number and layers of living cells in the cortex tissue (termed cortical cell count and cortical cell file number respectively) confer similar benefits. However, despite this knowledge, anatomical traits have received little attention as selection criteria in crop breeding because of the challenges associated with sampling and quantification of anatomical phenotypes."Anatomics" is a novel interdisciplinary approach that now makes it possible for the first time to rapidly image and analyse plant anatomical traits in large numbers of crop varieties. Using this approach, my US collaborators generated root anatomical data for hundreds of maize varieties grown over 5 years in South Africa. Next, I analysed this dataset using an integrated gene-discovery pipeline that includes Genome wide association studies (GWAS), literature mining and enhanced data visualisation techniques. This analysis highlighted correlations between the anatomical data and hundreds of thousands of DNA polymorphisms in the maize diversity panel and thus pinpointed key genes that control root anatomical traits in maize. For instance, my pipeline identified two novel transcription factors functionally associated with aerenchyma formation. Mutation analysis of a maize mu insertion and a rice ortholog mutant for these transcription factors found a significant reduction in aerenchyma percentage in the mutants compared to the wild type. These studies confirmed the role of representative genes obtained from the Anatomics datasets in aerenchyma formation. However, the molecular mechanisms underlying the regulation of aerenchyma development are largely unknown. As a BBSRC Discovery Fellow, I will pioneer the use of anatomics and functional genomics approaches in cereal crops at University of Nottingham. My first objective will be to determine the molecular mechanism for aerenchyma mediated resilience in maize. Next, I will use Laser Capture Microdissection and Single-Cell RNA sequencing approaches to generate a cellular resolution gene expression atlas for the maize root and map genes and signals that control aerenchyma formation during root growth and development. Finally, I will translate the knowledge generated in maize to other important and often under-invested crops such as pearl millet to accelerate breeding and genetic improvement programmes. Aerenchyma formation is a developmental programme where specific cells within the same cortical layer undergo programmed cell death while neighboring cells survive. My spatiotemporal gene expression atlas of maize root at cellular resolution will be an unparalleled resource to characterise aerenchyma as well as other root anatomical traits and developmental programmes. Further, the gene regulatory mechanisms unravelled from this research will also help us to understand how such traits confer stress tolerance in maize and pearl millet crops which are economically important dietary staples. Thus, my research will also contribute to UK's global food security efforts.
干旱和土壤肥力低是全球作物产量的主要限制。由于土壤质量恶化,人口压力增加和气候变化,这些限制随着时间的流逝而变得更加挑战。在这种情况下,最近的发现已经确定了几种根源解剖性状,可以通过改善水和养分吸收来显着提高农作物产量和气候韧性。例如,当活细胞发生编程细胞死亡时,会发生空气空间(称为Aerecnyma)的形成。这大大减少了根组织的养分需求和呼吸,使植物能够获得更多的土壤资源,并在干旱和次优的养分条件下提高农作物的产量。除了气质形成外,其他特征(分别称为皮质细胞计数和皮质细胞文件编号)等其他特征(分别称为皮质细胞计数和皮质细胞数量)赋予了类似的益处。然而,尽管有这些知识,但由于与解剖表型的抽样和定量相关的挑战,解剖学特征作为作物繁殖的选择标准很少受到关注。“解剖学”是一种新型的跨学科方法,现在可以在大量作物中快速地形象形象和分析植物的解剖特征。使用这种方法,我的美国合作者生成了数百种玉米品种在南非种植的玉米品种的根源解剖数据。接下来,我使用集成的基因发现管道分析了该数据集,该管道包括基因组广泛的关联研究(GWAS),文献挖掘和增强数据可视化技术。该分析强调了解剖学数据与玉米多样性面板中数十万个DNA多态性之间的相关性,因此指出了控制玉米根部解剖特征的关键基因。例如,我的管道确定了两个新型的转录因子在功能上与空气教育形成相关。与野生型相比,这些转录因子的玉米MU插入和水稻直系同源物突变体的突变分析发现,突变体的空气症百分比显着降低。这些研究证实了从解剖学数据集中获得的代表性基因的作用。然而,播出气质发育调节的基础的分子机制在很大程度上尚不清楚。作为BBSRC发现研究员,我将在诺丁汉大学的谷物作物中使用解剖学和功能基因组学方法。我的第一个目标是确定玉米中气质介导的弹性的分子机制。接下来,我将使用激光捕获显微解剖和单细胞RNA测序方法来生成玉米根和MAP基因和MAP基因和信号的细胞分辨率基因表达地图集,并在根生长和发育过程中控制气氛形成。最后,我将把玉米中产生的知识转化为其他重要且经常受到投资的农作物,例如珍珠小米,以加速育种和遗传改善计划。 Aerecnyma形成是一个发育程序,其中相同皮质内的特定细胞经历了编程的细胞死亡,而相邻细胞存活。我在细胞分辨率下的玉米根的时空基因表达地图集将是表征Aerecnyma以及其他根系解剖性状和发育程序的无与伦比的资源。此外,从这项研究中解散的基因调节机制也将有助于我们了解这种特征如何赋予玉米和珍珠小米作物的胁迫耐受性,这些玉米和珍珠米尔群在经济上重要的饮食主食。因此,我的研究还将为英国的全球粮食安全工作做出贡献。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ethylene regulates auxin-mediated root gravitropic machinery and controls root angle in cereal crops
  • DOI:
    10.1093/plphys/kiae134
  • 发表时间:
    2024-03-06
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Kong,Xiuzhen;Xiong,Yali;Huang,Guoqiang
  • 通讯作者:
    Huang,Guoqiang
Phosphite treatment can improve root biomass and nutrition use efficiency in wheat.
Uncovering genetic control of primary root length variation in Brassica napus using QTL-seq. A commentary on: 'Rapid identification of a major locus qPRL-C06 affecting primary root length in Brassica napus by QTL-seq'.
  • DOI:
    10.1093/aob/mcad016
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Aneesh Lale;R. Swarup;R. Bhosale
  • 通讯作者:
    Aneesh Lale;R. Swarup;R. Bhosale
Silicon and bioagents pretreatments synergistically improve upland rice performance during water stress
硅和生物制剂预处理可协同提高旱稻在水分胁迫下的性能
  • DOI:
    10.1016/j.stress.2023.100142
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Costa N
  • 通讯作者:
    Costa N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rahul Bhosale其他文献

Auxin-dependent post-translational regulation of MONOPTEROS in the <em>Arabidopsis</em> root
  • DOI:
    10.1016/j.celrep.2024.115083
  • 发表时间:
    2024-12-24
  • 期刊:
  • 影响因子:
  • 作者:
    Alex Cavalleri;Chiara Astori;Jekaterina Truskina;Mara Cucinotta;Etienne Farcot;Elina Chrysanthou;Xiaocai Xu;Jose M. Muino;Kerstin Kaufmann;Martin M. Kater;Teva Vernoux;Dolf Weijers;Malcolm J. Bennett;Rahul Bhosale;Anthony Bishopp;Lucia Colombo
  • 通讯作者:
    Lucia Colombo

Rahul Bhosale的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rahul Bhosale', 18)}}的其他基金

Diving Deeper: Unravelling How Plants Regulate Root Growth Angle
深入研究:揭示植物如何调节根部生长角度
  • 批准号:
    BB/X014843/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Research Grant

相似国自然基金

儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
  • 批准号:
    82360892
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
  • 批准号:
    82201271
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
  • 批准号:
    32201547
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

全脳の解剖学的結合と瞬間的機能的結合を統合したてんかん発作伝播ネットワーク解析
整合全脑解剖连接和瞬时功能连接的癫痫发作传播网络分析
  • 批准号:
    24K19527
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
情報伝達の主体となるグリア細胞の解剖学的分類と機能解析
信息传递主体胶质细胞的解剖分类与功能分析
  • 批准号:
    24H00589
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
ロマン主義パラダイムの領域横断的研究―19世紀前半の比較解剖学・地質学・古生物学
浪漫主义范式的跨学科研究:19世纪上半叶的比较解剖学、地质学和古生物学
  • 批准号:
    24K03740
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
キク属モデル系統と種間交雑を基軸としたキク属重要形質の分子遺伝学的解剖
基于菊花属模式株及种间杂交的菊属重要性状分子遗传分析
  • 批准号:
    24H00513
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
視空間性注意障害の神経解剖と神経生理学ネットワーク変容の統合的理解
视觉空间注意力障碍的神经解剖学和神经生理学网络改变的综合理解
  • 批准号:
    24K20519
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了