Improving the penicillin fermentation by modelling and optimising its metabolic network and transporterome

通过建模和优化青霉素的代谢网络和转运体来改善青霉素发酵

基本信息

  • 批准号:
    BB/R014744/1
  • 负责人:
  • 金额:
    $ 54.65万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Penicillin was famously (re)discovered by Alexander Fleming in 1928, and developed into an initial fermentation process by Florey, Chain and Heatley during the early 1940s. Despite increasing antimicrobial resistance, it remains one of the UK fermentation industry's top products (often combined with the penicillinase inhibitor clavulanic acid in products such as Augmentin). However, in terms of the efficiency of conversion of carbon in the sugar feedstock to carbon in the penicillin product it is a lousy fermentation as this efficiency is no more than 10%. Many other fermentations, such as that producing monosodium glutamate, have a carbon conversion efficiency approaching 100%. Consequently, there is much room for improvement, and for making the penicillin process more competitive economically. As with the design of engineering artefacts such as the Boeing 777, what is needed is a mathematical model of the metabolic network of the penicillin producer, P. chrysogenum. The amount that each gene is expressed tells us what is going on, and is known as the transcriptome. To this end, transcriptome data FROM THE PRODUCTION STRAIN ITSELF will be made available by GSK. From the (known) genome sequence we can produce a computer version of the metabolic network for analysis. Importantly, the media used for the penicillin process are fully defined, which makes it feasible to do this modelling. Having produced the model, we can predict, initially qualitatively, what molecules it will produce, and these will be measured experimentally on extracts of cells and medium provided by GSK. The combination of the model and the transcriptome allows us to calculate all the fluxes, both to product and to non-profitable places. This will help determine which changes in the genetic make-up of the Penicillium fungi are most likely to lead to a higher carbon conversion efficiency. These changes will be made (by GSK) and tested on the new production strains. The ability to do these analyses on cell extracts and inside a computer means that while we have access to the data we neither have nor need access to the proprietary production strains themselves.Importantly, we shall curate all of the data in a suitable database.
青霉素是由亚历山大·弗莱明(Alexander Fleming)在1928年发现的,并于1940年代初被弗洛里(Florey),链条和希特利(Heatley)发酵成最初的发酵​​过程。尽管抗菌素耐药性增加,但它仍然是英国发酵行业的顶级产品之一(在增强素等产品中通常与青霉素酶抑制剂clavulanic结合使用)。然而,就糖原料中碳转化为碳碳中的碳中的碳的效率而言,这是一种糟糕的发酵,因为这种效率不超过10%。许多其他发酵,例如产生谷氨酸单钠的发酵,其碳转化效率接近100%。因此,有很大的改进空间可以使青霉素过程在经济上更具竞争力。与波音777这样的工程伪像的设计一样,需要的是青霉素生产商的代谢网络的数学模型。每个基因表示的数量告诉我们发生了什么,被称为转录组。为此,GSK将提供来自生产应变本身的转录组数据。从(已知的)基因组序列中,我们可以生成代谢网络的计算机版本进行分析。重要的是,用于青霉素过程的介质已完全定义,这使得进行此建模使其可行。产生了该模型后,我们可以在定性上预测其将产生的分子,这些分子将在实验上以GSK提供的细胞提取物和培养基提取。该模型和转录组的组合使我们能够计算出所有通量,包括产品和非营利位置。这将有助于确定真菌遗传组成的哪些变化最有可能导致较高的碳转化效率。这些更改将(由GSK)进行,并对新的生产菌株进行了测试。对细胞提取物进行这些分析和计算机内部进行这些分析的能力意味着,尽管我们可以访问数据,但我们既不需要访问专有生产菌株。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intelligent host engineering for metabolic flux optimisation in biotechnology.
  • DOI:
    10.1042/bcj20210535
  • 发表时间:
    2021-10-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Munro LJ;Kell DB
  • 通讯作者:
    Kell DB
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Kell其他文献

Douglas Kell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Kell', 18)}}的其他基金

MUSERGEN: MultiUSER equipment for GENe identification in biosciences and biotechnology
MUSERGEN:用于生物科学和生物技术中基因识别的多用户设备
  • 批准号:
    BB/T017481/1
  • 财政年份:
    2020
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Research Grant
Untargeted metabolomics of serum samples during COVID-19 disease progression
COVID-19 疾病进展期间血清样本的非靶向代谢组学
  • 批准号:
    BB/V003976/1
  • 财政年份:
    2020
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Research Grant
MUSERMET: MultiUSER equipment for small molecule identification in untargeted METabolomics
MUSERMET:用于非靶向代谢组学中小分子鉴定的 MultiUSER 设备
  • 批准号:
    BB/S019030/1
  • 财政年份:
    2019
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Research Grant
Synthetic biology of transporters and other enzymes in yeast
酵母中转运蛋白和其他酶的合成生物学
  • 批准号:
    BB/N021037/2
  • 财政年份:
    2019
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Research Grant
GeneORator: a novel and high-throughput method for the synthetic biology-based improvement of any enzyme
GeneORator:一种新颖的高通量方法,用于基于合成生物学的任何酶的改进
  • 批准号:
    BB/S004955/1
  • 财政年份:
    2019
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Research Grant
The roles of transporters in the human metabolic network
转运蛋白在人体代谢网络中的作用
  • 批准号:
    BB/P009042/2
  • 财政年份:
    2018
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Research Grant
MultiUSer equipment for high-throughput, high-content analysis in Industrial and Cellular biotechnology (MUSIC)
用于工业和细胞生物技术 (MUSIC) 中高通量、高内涵分析的多用户设备
  • 批准号:
    BB/R000093/1
  • 财政年份:
    2017
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Research Grant
The roles of transporters in the human metabolic network
转运蛋白在人体代谢网络中的作用
  • 批准号:
    BB/P009042/1
  • 财政年份:
    2017
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Research Grant
Synthetic biology of transporters and other enzymes in yeast
酵母中转运蛋白和其他酶的合成生物学
  • 批准号:
    BB/N021037/1
  • 财政年份:
    2016
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Research Grant
Continued development of ChEBI towards better usability for the systems biology and metabolic modelling community
持续开发 ChEBI,以提高系统生物学和代谢建模社区的可用性
  • 批准号:
    BB/K019783/1
  • 财政年份:
    2013
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Research Grant

相似国自然基金

苹果多酚基于肠道菌群修复展青霉素诱导的肠粘膜损伤分子机制
  • 批准号:
    32372348
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
铜绿假单胞菌青霉素结合蛋白PBP1A和鸟苷三磷酸酶FlhF介导极生鞭毛定位组装的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
展青霉素纳米抗体的多价自组装及其特异性纳米酶的分析特性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
青霉素菌渣好氧堆肥中抗生素制约下抗性基因变化的微生态机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
酵母炭微球孔道调控及其苹果汁中展青霉素高选择性吸附机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a mechanistically novel synergistic adjuvant to partner with polymyxin antibiotics
开发一种与多粘菌素抗生素配合使用的新型机械协同佐剂
  • 批准号:
    10481682
  • 财政年份:
    2022
  • 资助金额:
    $ 54.65万
  • 项目类别:
Development of a novel agent to treat antimicrobial resistant Neisseria gonorrhoeae
开发治疗耐药性淋病奈瑟菌的新型药物
  • 批准号:
    9620389
  • 财政年份:
    2018
  • 资助金额:
    $ 54.65万
  • 项目类别:
Development of a novel agent to treat antimicrobial resistant Neisseria gonorrhoeae
开发治疗耐药性淋病奈瑟菌的新型药物
  • 批准号:
    9913150
  • 财政年份:
    2018
  • 资助金额:
    $ 54.65万
  • 项目类别:
New Approaches to Mining the Complete Actinomycete Genome to Discover Novel Beta-Lactam Antibiotics
挖掘完整放线菌基因组以发现新型β-内酰胺抗生素的新方法
  • 批准号:
    9409126
  • 财政年份:
    2017
  • 资助金额:
    $ 54.65万
  • 项目类别:
Therapeutics for Drug-Resistant Bacteria: Pseudouridimycins
耐药细菌的治疗方法:假尿嘧啶霉素
  • 批准号:
    8978290
  • 财政年份:
    2013
  • 资助金额:
    $ 54.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了