Geospatial Resource for Agricultural Species and Pests with integrated workflow modelling to support Global Food Security (GRASP-GFS): a prototype

农业物种和害虫地理空间资源与集成工作流程建模以支持全球粮食安全 (GRASP-GFS):原型

基本信息

  • 批准号:
    BB/K004034/1
  • 负责人:
  • 金额:
    $ 15.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Access to a wide range of information, from rigorous scientific results to 'hear-say' farmer's knowledge is becoming critical to be able to target efforts in achieving food security planning at community or country levels. Also, designing scientific and intervention strategies within changing climates and markets is a fundamental challenge. Developments of technologies for data collection in mobile communications, sensor platforms, spatial search and pervasive computing are fundamentally changing research in agriculture. However, inter-disciplinary research needed to transform raw data into useful intelligence and knowledge to improve the planet's environmental, economic and societal well being is still constrained by disciplinary and organisational silos and legacy concepts and an non-existent or non-rigorous approach to quantifying the uncertainty intrinsic in any collected dataset. GRASP-GFS will use a geospatially-anchored 'genotype' database integration principle to query such multidimensional data information, including papers, reports, indigenous, socio-economic and farmer's knowledge. This framework will enable uncertainty assessments through the use of quality weighting descriptors of the different components within a chosen geo-workflow model for food security.Cross-disciplinary expertise driven from geospatial sciences methodologies will be used to develop this integrating framework across all subjects relevant to Food Security. The driving focus will be the agricultural species germplasm for genotype characteristics with the data ordered by geospatial origin with the higher level descriptor being the 'agricultural trait'. A particular novel aspect is the combined use of climate records or scenarios and land ground condition data with known (and new) sources of traits in crop, animal and microbial species of agricultural importance. This will permit new perspectives on genetic diversity, identifying new sources of germplasm and sources of trait variation, geolocating suitable germplasm by a combination of agro-ecological modelling and matching principles, planning breeding objectives with the greatest likely impact by taking into acccount the added information of local market and farmer knowledge. These modelling capabilities will come from framing each above model within a generic approach allowing workflow composing based on semantic description of data and processes and workflow quality assessment for uncertainty/error propagation. Two use cases modelling with wheat crop in the UK and bambara groundnut in Malaysia will demonstrate the approach with crop specific data and processing models to forecast geospatial trait variation for these two crops.Supporting the Crops for the Future Research Centre (CFFRC) in Malaysia, the GRASP integrated geospatial platform for agricultural species, including major pests and diseases, will allow future investigators to shape the data handling and integration according to their subject requirements, before contributing to the population of the prototype database. Data capture from sensor network to remote sensing, including crowd-sourcing from farmers will be further integrated within the GRASP platform allowing other refinements of the workflow modelling and multiple scale scenario risk assessments.Using open standards and interoperability principles developed by the Open Geospatial Consortium (OGC), the platform deliverable software will be released under open source license to enable wide use and further developments also ensuring sustainability of the project. Both desktop interfaces and web interfaces with compiled current databases (with updating facilities) will be released, enabling wide audience usage even from remote places with weak internet connections. The GRASP-GFS aims to link with other global initiatives such as GEOSS (Global Earth Observation System of Systems) and GeoNode to develop productive interaction between bench, economic and social scientists.
获取广泛的信息,从严格的科学结果到“道听途说”的农民知识,对于能够有针对性地努力实现社区或国家层面的粮食安全规划变得至关重要。此外,在不断变化的气候和市场中设计科学和干预策略也是一项根本挑战。移动通信、传感器平台、空间搜索和普适计算等数据收集技术的发展正在从根本上改变农业研究。然而,将原始数据转化为有用的情报和知识以改善地球的环境、经济和社会福祉所需的跨学科研究仍然受到学科和组织孤岛、遗留概念以及不存在或不严格的量化方法的限制。任何收集的数据集中固有的不确定性。 GRASP-GFS将使用地理空间锚定的“基因型”数据库集成原理来查询此类多维数据信息,包括论文、报告、土著、社会经济和农民知识。该框架将通过使用选定的粮食安全地理工作流程模型中不同组成部分的质量加权描述符来实现不确定性评估。由地理空间科学方法驱动的跨学科专业知识将用于开发这一跨所有与粮食安全相关的学科的综合框架。粮食安全。驱动焦点将是农业物种种质的基因型特征,数据按地理空间起源排序,更高级别的描述符是“农业性状”。一个特别新颖的方面是将气候记录或情景以及土地条件数据与具有农业重要性的作物、动物和微生物物种的已知(和新)性状来源相结合。这将为遗传多样性提供新的视角,识别新的种质来源和性状变异来源,通过结合农业生态模型和匹配原则对合适的种质进行地理定位,通过考虑附加信息来规划具有最大可能影响的育种目标当地市场和农民知识。这些建模功能将来自于在通用方法中构建上述每个模型,允许基于数据和流程的语义描述进行工作流组合以及不确定性/错误传播的工作流质量评估。英国小麦作物和马来西亚班巴拉花生的两个用例模型将展示利用作物特定数据和处理模型来预测这两种作物地理空间性状变异的方法。支持马来西亚未来作物研究中心 (CFFRC), GRASP 针对农业物种(包括主要病虫害)的综合地理空间平台将允许未来的研究人员根据其主题要求制定数据处理和集成,然后再为原型数据库的数量做出贡献。从传感器网络到遥感的数据捕获,包括来自农民的众包,将进一步集成到 GRASP 平台中,从而允许对工作流程建模和多尺度场景风险评估进行其他改进。使用开放地理空间联盟开发的开放标准和互操作性原则( OGC),平台可交付软件将在开源许可下发布,以实现广泛使用和进一步开发,同时确保项目的可持续性。桌面界面和带有已编译的当前数据库(带有更新设施)的网络界面都将被发布,即使是互联网连接较弱的偏远地区,也可以让广泛的受众使用。 GRASP-GFS 旨在与 GEOSS(全球地球观测系统系统)和 GeoNode 等其他全球倡议联系起来,以发展基础科学家、经济和社会科学家之间的富有成效的互动。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulating Eyespot Disease Development and Yield Loss Using APSIM for UK Wheat
使用 APSIM 模拟英国小麦的眼斑病发展和产量损失
Geospatial binding for transdisciplinary research in crop science: the GRASPgfs initiative
作物科学跨学科研究的地理空间结合:GRASPgfs 倡议
A geoprocessing modelling interoperable framework for AgriGIS using open data and open standards
使用开放数据和开放标准的 AgriGIS 地理处理建模互操作框架
  • DOI:
    http://dx.10.7287/peerj.preprints.2136
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Santos R
  • 通讯作者:
    Santos R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Jackson其他文献

Reliability of Probe Speed Data for Detecting Congestion Trends
用于检测拥塞趋势的探测速度数据的可靠性
A Concept Selection Method for Designing Climbing Robots
一种攀爬机器人设计概念选择方法
  • DOI:
    10.4028/www.scientific.net/kem.649.22
  • 发表时间:
    2015-06-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Guo;L. Justham;Michael Jackson;R. Parkin
  • 通讯作者:
    R. Parkin
An Open Source Linked Data Framework for Publishing Environmental Data under the UK Location Strategy
用于在英国位置战略下发布环境数据的开源链接数据框架
  • DOI:
  • 发表时间:
    2011-10-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Shaon;A. Woolf;R. Boczek;Will Rogers;Michael Jackson
  • 通讯作者:
    Michael Jackson
Model-based reasoning
基于模型的推理
  • DOI:
    10.1016/j.compedu.2012.11.014
  • 发表时间:
    2013-05-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Jackson;Janusz Wojtusiak;Dayne Freitag;Eugene Subbotsky;Hans M. Nordahl;Jens C. Thimm;John Burgoyne;Roberto Poli;Thomas R. Guskey;Michael Davison;J. Magnotti;Adam M. Goodman;Jeffrey S. Katz;L. Verschaffel;W. Dooren;B. Smedt;Sean A. Fulop;Melva R. Grant;Leonid I. Perlovsky;B. De Smedt;P. Ghesquière;Dariusz Plewczynski;Leily Ziglari;P. Birjandi;Scott Rick;Roberto Weber;N. Seel;Maike Luhmann;Michael Eid;A. Antonietti;Barbara Colombo;Hamish Coates;Ali Radloff;P. Pirnay;Dirk Ifenthaler;Edward Swing;Craig A Anderson;David Tzuriel;Norman M. Weinberger;David C. Riccio;Patrick K. Cullen;J. Tallet;Megan L. Hoffman;David A. Washburn;Iván Izquierdo;Jorge H. Medina;M. Cammarota;A. Podolskiy;Joke Torbeyns;J. Kranzler;P. A. Kirschner;F. Kirschner;Kenn Apel;Julie A. Wolter;J. Masterson;JungMi Lee;Stefan N Groesser;Sabine Al;Philip Barker;Paul Schaik;I. Cutica;Monica Bucciarelli;K. Pata;Anna Strasser;A. Guillot;N. Hoyek;Christian Collet;Maria Opfermann;Roger Azevedo;Detlev Leutner;Thomas C. Toppino;Alice Y. Kolb;David A. Kolb;P. Brazdil;Ricardo Vilalta;Carlos Soares;C. Giraud;Jeffrey W. Bloom;Tyler Volk;Marwan A. Dwairy;Richard A. Swanson;Johanna Pöysä;K. Luwel;Theo Hug;Angélique Martin;Nicolas Guéguen;Craig Hassed;Fabio Alivernini;Michael Herczeg;M. Mastropieri;T. Scruggs;Angelika Rieder;S. Castillo;Gerardo Ayala;R. Low;R. Babuška;Barbara C. Buckley;Henry Markovits;Sungho Kim;In;Michael J. Spector;A. Towse;Charlie N. Lewis;Brian Francis;David N. Rapp;Pratim Sengupta;Sidney D’Mello;Serge Brand;J. Patry;Cees Klaassen;Sieglinde Weyringer;Alfred Weinberger;Marilla D. Svinicki;Jane S. Vogler;Andrew J. Martin;John M. Keller;ChanMin Kim;Gabriele Wulf;Lynne E. Parker;Michael Wunder;Michael Littman;Lisa J. Lehmberg;C. Victor Fung;Hannele Niemi;Steven Reiss;Piet Desmet;F. Cornillie;Helmut M. Niegemann;Steffi Heidig;Dominic W. Massaro;Charles Fadel;Cheryl Lemke;R. Grabner;Michael D. Basil;Daniel R. Little;Stephan Lewandowsky;Parmjit Singh;Zheng Liu;Marcelo H. Ang;W. Seah;Jack Heller;C. Randles;Kenneth S. Aigen
  • 通讯作者:
    Kenneth S. Aigen
Scrapie infection investigated by magnetic resonance imaging and Fourier transform infrared microscopy
通过磁共振成像和傅里叶变换红外显微镜研究瘙痒病感染
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Dubois;R. Baydack;E. McKenzie;T. Booth;Michael Jackson
  • 通讯作者:
    Michael Jackson

Michael Jackson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Jackson', 18)}}的其他基金

REU SITE: A Pilot Distributed REU Site Focused on Serving Physics and Astronomy Students from Comprehensive and Community Colleges
REU SITE:分布式 REU 试点站点,专注于为综合大学和社区学院的物理和天文学学生提供服务
  • 批准号:
    1358879
  • 财政年份:
    2014
  • 资助金额:
    $ 15.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Time- and Temperature-dependent Cation Ordering in Natural Titanomagnetites with Applications to Paleomagnetism and Geospeedometry
合作研究:天然钛磁铁矿中时间和温度依赖性阳离子排序及其在古地磁学和地速测量中的应用
  • 批准号:
    1315845
  • 财政年份:
    2013
  • 资助金额:
    $ 15.35万
  • 项目类别:
    Standard Grant
RUI: High Resolution Spectroscopy of Stable Molecular Species and Free Radicals
RUI:稳定分子种类和自由基的高分辨率光谱
  • 批准号:
    0910935
  • 财政年份:
    2009
  • 资助金额:
    $ 15.35万
  • 项目类别:
    Standard Grant
RUI: High Resolution Spectroscopy of Stable Molecular Species and Free Radicals
RUI:稳定分子种类和自由基的高分辨率光谱
  • 批准号:
    0802607
  • 财政年份:
    2007
  • 资助金额:
    $ 15.35万
  • 项目类别:
    Standard Grant
D-SCENT: Raising challenges to deception attempts using data scent trails
D-SCENT:利用数据气味踪迹对欺骗尝试提出挑战
  • 批准号:
    EP/F008600/1
  • 财政年份:
    2007
  • 资助金额:
    $ 15.35万
  • 项目类别:
    Research Grant
RUI: High Resolution Spectroscopy of Stable Molecular Species and Free Radicals
RUI:稳定分子种类和自由基的高分辨率光谱
  • 批准号:
    0604715
  • 财政年份:
    2006
  • 资助金额:
    $ 15.35万
  • 项目类别:
    Standard Grant
Collaborative Research: EarthScope-Acquisition, Construction, Facility Management, Operations and Maintenance/Plate Boundary Observatory (PBO)
合作研究:EarthScope-采集、建设、设施管理、运营和维护/板块边界观测站 (PBO)
  • 批准号:
    0350028
  • 财政年份:
    2003
  • 资助金额:
    $ 15.35万
  • 项目类别:
    Cooperative Agreement
U.S.-U.K. Cooperative Research: High Resolution Spectroscopy of Free Radicals Using Laser Magnetic Resonance
美国-英国合作研究:使用激光磁共振进行自由基高分辨率光谱分析
  • 批准号:
    0200746
  • 财政年份:
    2002
  • 资助金额:
    $ 15.35万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Three-Laser Heterodyne Frequency Measurement System
MRI:获取三激光外差频率测量系统
  • 批准号:
    0114450
  • 财政年份:
    2001
  • 资助金额:
    $ 15.35万
  • 项目类别:
    Standard Grant
High Resolution Molecular Spectroscopy Using Direct Discharge and Optically Pumped Molecular Lasers in the Far-Infrared
使用远红外直接放电和光泵浦分子激光器的高分辨率分子光谱
  • 批准号:
    0078812
  • 财政年份:
    2000
  • 资助金额:
    $ 15.35万
  • 项目类别:
    Continuing Grant

相似国自然基金

战略与管理研究类:农业水资源高效利用与智慧管控发展战略研究
  • 批准号:
    52342904
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
冰冻圈影响区水文农业模型构建及水资源供需关系研究-以塔里木河流域为例
  • 批准号:
    42301147
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
土地托管对旱作农业土地资源配置影响及增效策略研究
  • 批准号:
    72304263
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
农业科技资源配置优化助推农业高质量发展的作用机理、效应识别及实现路径研究
  • 批准号:
    72264008
  • 批准年份:
    2022
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
水资源刚性约束下黄河流域农业节水机制与调控
  • 批准号:
    U2243217
  • 批准年份:
    2022
  • 资助金额:
    260 万元
  • 项目类别:

相似海外基金

AUTOFARM: Automating UAV Technology for Orchards to Focus Agricultural Resource Management
AUTOFARM:果园自动化无人机技术,专注于农业资源管理
  • 批准号:
    10108599
  • 财政年份:
    2024
  • 资助金额:
    $ 15.35万
  • 项目类别:
    Launchpad
Future Agricultural Resource Management and Water Innovations for a Sustainable Europe
未来农业资源管理和水创新,实现可持续欧洲
  • 批准号:
    10107818
  • 财政年份:
    2024
  • 资助金额:
    $ 15.35万
  • 项目类别:
    EU-Funded
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
  • 批准号:
    10736961
  • 财政年份:
    2023
  • 资助金额:
    $ 15.35万
  • 项目类别:
Outreach Core
外展核心
  • 批准号:
    10762149
  • 财政年份:
    2023
  • 资助金额:
    $ 15.35万
  • 项目类别:
1/2 Cancer Research and Education to Advance HealTh Equity (CREATE) Partnership
1/2 癌症研究和教育促进健康公平 (CREATE) 合作伙伴关系
  • 批准号:
    10762141
  • 财政年份:
    2023
  • 资助金额:
    $ 15.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了